Zastosowanie Nanokryształów Kwantowych w Medycynie

Autorzy

Tomasz Furgoł - Studenckie Koło Naukowe przy Katedrze i Oddziale Klinicznym Kardiochirurgii, Transplantologii, Chirurgii Naczyniowej i Endowaskularnej SCCS (3); Tola Kotkiewicz - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Julia Gawron - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Łukasz Grajcarek - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Michalina Masternak - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Agnieszka Sawina - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

kropki kwantowe, medycyna, bioobrazowanie

Streszczenie

Pomimo ogromnych postępów w nanomedycynie, obserwuje się deficyt produktów tworzonych w tej gałęzi przemysłu medycznego, które byłyby regularnie wykorzystywane w środowisku klinicznym. Jednym z nowatorskich rozwiązań wykorzystania wiedzy z dziedziny nanomedycyny są Nanokryształy Kwantowe. Posiadają one specyficzne właściwości optyczne, dzięki czemu mają różne możliwości zastosowania. Nanokryształy te mogą być wykorzystywane jako środki kontrastowe w obrazowaniu tkanek głębokich i guzów, spotykamy je w bioczujnikach, mogą posłużyć do detekcji komórek przy użyciu fluorescencji, a także stosuje się je w terapii fotodynamicznej nowotworów czy celowanym podawaniu leków. Celem tego rozdziału jest opisanie zastosowania Nanokryształów Kwantowych w medycynie.

Bibliografia

Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. doi:10.1016/j.addr.2021.114083

Yan ZP, Yang M, Lai CL. COVID-19 vaccines: a review of the safety and efficacy of current clinical trials. Pharmaceuticals. 2021;14:5.

Khalil IA, Younis MA, Kimura S, Harashima H. Lipid nanoparticles for cell-specific in vivo targeted delivery of nucleic acids. Biol Pharm Bull. 2020;43(4):584–595. doi:10.1248/bpb.b19-00743

Younis MA, Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release. 2021;331:335–349. doi:10.1016/j.jconrel.2021.01.021

Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A multifunctional lipid-based nanodevice for the highly specific codelivery of sorafenib and midkine siRNA to hepatic cancer cells. Mol Pharm. 2019;16(9):4031–4044. doi:10.1021/acs.molpharmaceut.9b00738

Abdellatif AAH, Alsharidah M, Al Rugaie O, Tawfeek HM, Tolba NS. Silver nanoparticle-coated ethyl cellulose inhibits tumor necrosis factor-α of breast cancer cells. Drug Des Devel Ther. 2021;15:2035–2046. doi:10.2147/DDDT.S310760

Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Bioeng Biotechnol. 2020;8:990.

Baumann AE, Burns DA, Liu B, Thoi VS. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem. 2019;2(1):86. doi:10.1038/s42004-019-0184-6

Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H-W, Mozafari M. Quantum dots: a review from concept to clinic. Biotechnol J. 2020;15(12):2000117.

Ekimov AI, Efros AL, Onushchenko AA. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985;56(11):921–924. doi:10.1016/S0038-1098(85)80025-9

House JE, House KA. Chapter 12 - Silicon, Germanium, Tin, and Lead. In: House JE, House KA, editors. Descriptive Inorganic Chemistry. 3rded. Boston: Academic Press; 2016:177–196.

Speranskaya ES, Beloglazova NV, Lenain P, et al. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosens Bioelectron. 2014;53:225–231. doi:10.1016/j.bios.2013.09.045

Chen D, Wu IC, Liu Z, et al. Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem Sci. 2017;8(5):3390–3398. doi:10.1039/C7SC00441A

Nie, S., Xing, Y., Kim, G.J., Simons, J.W., (2007). Nanotechnology Applications in Cancer. Annu. Rev. Biomed. Eng., 9, 257–288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025.

Wang D, Guo L, Zhen Y, Yue L, Xue G, Fu F. AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J Mater Chem A. 2014;2(30):11716–11727. doi:10.1039/C4TA01444H

Babentsov V, Sizov F. Defects in quantum dots of IIB–VI semiconductors. Opto-Electron Rev. 2008;16(3):208–225.

Zheng S, Chen J, Johansson EMJ, Zhang X. PbS colloidal quantum dot inks for infrared solar cells. Iscience. 2020;23(11):101753. doi:10.1016/j.isci.2020.101753

Younis MR, He G, Lin J, Huang P. Recent advances on graphene quantum dots for bioimaging applications. Front Chem. 2020;8:424. doi:10.3389/fchem.2020.00424

Ren X, Yang X, Xie G, Luo J. Black phosphorus quantum dots in aqueous ethylene glycol for macroscale superlubricity. ACS Appl Nano Mater. 2020;3(5):4799–4809. doi:10.1021/acsanm.0c00841

Meng S, Zhang Y, Wang H, et al. Recent advances on TMDCs for medical diagnosis. Biomaterials. 2021;269:120471. doi:10.1016/j. biomaterials.2020.120471

Xu Q, Ma J, Khan W, et al. Highly green fluorescent Nb2C MXene quantum dots. Chem Commun. 2020;56(49):6648–6651. doi:10.1039/D0CC02131H

Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23 (37):4248–4253. doi:10.1002/adma.201102306

Xiao C, Zhao Q, Jiang C-S, et al. Perovskite quantum dot solar cells: mapping interfacial energetics for improving charge separation. Nano Energy. 2020;78:105319. doi:10.1016/j.nanoen.2020.105319

Kowalski P., Machnikowski P., (2008), Multiple exciton generation in InAs nanocrystals. Acta Phys. Pol. A. 114: 1187–1192.

Beard M. C., (2011), Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. Lett. 2: 1282– 1288

Shockley W., Queisser H. J., (1961), Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32: 510-516.

Klem E. J. D., MacNeil D. D., Cyr P. W., Levina L., Sargent E. H., (2007), Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via interquantum-dot bridging during growth from solution. Appl. Phys. Lett. 90: 10–12.

McDonald S. A., Konstantatos G., Zhang S., Cyr P. W., Klem E. J. D., Levina L., (2005), Solutionprocessed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4: 138–142.

Kumar D., Sumanth B., Mahesh M., (2018), Quantum nanostructures (QDs): An Overview. In book: Synthesis of Inorganic Nanomaterials.

Li J., Zhu J., (2013), QDs for fluorescent biosensing and bio-imaging applications. Analyst. 138: 2506-2515.

Hutter E., Maysinger D., (2011), Gold nanoparticles and QDs for bioimaging. Microscopy Res. Techniq. 74: 592-604.

Huo F., Liang W., Tang Y., (2019), Full-color carbon dots with multiple red-emission tuning: on/off sensors, in vitro and in vivo multicolor bioimaging. J. Mater. Sci. 54: 6815- 6825.

Sellers I. R., Liu H. Y., Badcock T. J., Groom K. M., Mowbray D. J., Gutiérrez M., Hopkinson M., Skolnick M. S., (2005), Lasing and spontaneous emission characteristics of 1.3μm In(Ga)As quantum-dot lasers. Phys. E: Low-dimens. Sys. Nanostruc. 26: 382-385.

Linkov P., Krivenkov V., Nabiev I., Samokhvalov P., (2016), High Quantum yield CdSe/ZnS/CdS/ZnS multishell QDs for biosensing and optoelectronic applications. Mater. Today: Proceed. 3: 104-108.

Wei Y., Chen L., Zhao S., (2021), Green-emissive carbon QDs with high fluorescence quantum yield: Preparation and cell imaging. Front. Mater. Sci. 15: 253-265.

Grabolle M., Spieles M., Lesnyak V., Gaponik N., Eychmüller A., Resch-Genger U., (2009), Determination of the fluorescence quantum yield of quantum dots: Suitable procedures and achievable uncertainties. Analyt. Chem. 81: 6285-6294.

Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., (2008), QDs versus organic dyes as fluorescent labels. Nat. Meth. 5: 763-775.

Bruchez M. P., (2011), QDs find their stride in single molecule tracking. Current Opin. Chem. Biol. 15: 775-780.

Zhang L. J., Xia L., Xie H. Y., Zhang Z. L., Pang D. W., (2019), Quantum dot based biotracking and biodetection. Analyt. Chem. 91: 532-547.

Peng H., Zhang L., Soeller Ch., Travas-Sejdic J., (2007), Preparation of water-soluble CdTe/CdS core/shell QDs with enhanced photostability. J. Lumines. 127: 721-726.

Hotz C. Z., Bruchez M., (2007), QDs: Applications in biology (Methods in Molecular Biology, 374), ISBN- 10:3540140077.

Reimann S. M., Matti M., (2002), Electronic structure of quantum dots. Rev. Mod. Phys. 74: 1283-1342.

Vasudevan D., Ranganathan Gaddam R., Trinchi A., ColeI., (2015), Core-shell QDs: Properties and applications. J. Alloys Comp. 636: 395-404.

Zhang B., Cheng J., Li D., Liu X., Ma G., Chang J., (2008), A novel method to make hydrophilic QDs and its application on biodetection. Mater. Sci. Eng: B. 149: 87-92.

Xu J., Ruchala P., Ebenstain Y., Jack Li J., Weiss S., (2012), Stable, compact, bright biofunctional quantum dots with improved peptide coating. J. Phys. Chem. B. 116: 11370- 11378.

Ma L., Tu C., Le P., Chitoor S., Jun Lim S., Zahid M. U., Teng K. W., Ge P., Selvin P. R., Smith A. M., (2016), Multidentate polymer coatings for compact and homogeneous quantum dots with efficient bioconjugation. J. Am. Chem. Soc. 138: 3382-3394.

Gao W., Zhou Y., Xu C., Guo M., Qi Z., Peng X., Gao B., (2019), Bright hydrophilic and organophilic fluorescence carbon dots: One-pot fabrication and multi-functional applications at visualized Au3+ detection in cell and white light-emitting devices. Sens. Actuat. B: Chem. 281: 905-911.

Hotz C. Z., (2005), Applications of quantum dots in biology. Methods Mol. Biol. 303: 1-17.

R. Alexandre Loukanov, D. Dushkin Ceco, I. Papazova Karolina, V. Kirov Andrey, V. Abrashev Miroslav, Eiki Adachi. Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core–shell semiconductor nanoparticles. Colloids Surf. A. 245 (2004) 9-14

Singh M. K., Mathpal M. C., Agarwal A., (2012), Optical properties of SnO2 QDs synthesized by laser ablation in liquid. Chem. Phys. Lett. 536: 87-91.

Dieleman C. D., Ding W., Wu L., Thakur N., Bespalov I., Daiber B., Ekinci Y., Castellanos S., Ehrler B., (2020), Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography. Nanoscale. 12: 11306-11316.

Massimo F. B., Gadipalli R. R., Martin L. A., Rich L. E., Yamilov A., Heckman B. R., Leventis N., Guha S., Katsoudas J., Divan R., Mancini D. C., (2007), Quantum dots by ultraviolet and x-ray lithography. Nanotechnology. 18: 31/315603.

Kuruma, K., Ota Y., Kakudam M., Iwamoto S., Arakawa Y., (2020), Surface-passivated high-Q GaAs photonic crystal nanocavity with QDs. APL Photonics. 5: 5144959.

Birindelli S., Felici M., Wildmann J. S., Polimeni A., Capizzi M., Gerardino A., Rubini S., Martelli F., Rastelli A., Trotta R., (2014), Single photons on demand from novel site-controlled GaAsN/GaAsN : H quantum dots. Nano Lett. 3: 1275-1280.

Kundu S., Pillat V. K., (2020), Synthesis and characterization of graphene QDs. From the book Volume 2 Multifunctional Materials. Vol.2, Sec. 5.

Timothy J. G., Valerie J. L., Subhash H. R., Ian M. K., Howard W. H., (1997), Synthesis of gallium nitride QDs through reactive laser ablation. Appl. Phys. Lett. 70: 3122- 3124.

Mazumder S., Dey R., Mitra M. K., Mukherjee S., Das G. C., (2009), Review: Biofunctionalized quantum dots in biology and medicine. J. Nanomater. 2009: 815734.

Nozik A. J., (2008), Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457: 3-11.

Bera D., Qian L., Tseng T. K., Holloway P. H., (2010), Quantum dots and their multimodal applications: A review. Material. 3: 2260-2345.

Mansur A., Mansur H., González J., (2011), Enzyme-polymers conjugated to quantum-dots for sensing applications. Sensors. 11: 9951-9972.

Ayela D. W., Su W. N., Wu C. C., Shiau C. Y., Hwang B. J., (2014), Amorphous precursor compounds for CuInSe2 particles prepared by a microwave-enhanced aqueous synthesis and its electrophoretic deposition. Cryst. Eng. Comm. 16: 3121-3127.

Kuldeep D., (2014), Synthesis and characterization of PVA capped CdS nanocrystals. Res. J. Phys. Sci. 2: 1-3.

Pu Y., Cai F., Wang D., Wang J. X., Chen J. F., (2018), Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Indus. Eng. Chem. Res. 57: 1790-1802.

Baruah U., Gogoi N., Konwar A., Deka M. J., Chowdhury D., Majumdar G., (2014), Carbon dot based sensing of dopamine and ascorbic acid. J. Nanopart. 2014: 178518.

Abdellatif AA, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. IJN. 2022;Volume 17:1951-1970. doi:10.2147/ijn.s357980

Gandhi S, Sutariya P, Soni H, Chaudhari D. Quantum dots: Application in medical science. Int J Nano Dimens. 2023;14(1). doi:10.22034/ijnd.2022.1963190.2160

Su G, Liu C, Deng Z, Zhao X, Zhou X. Size-dependent photoluminescence of PbS QDs embedded in silicate glasses. Opt Mater Express.2017;7(7):2194–2207. doi:10.1364/OME.7.002194

Bera D, Qian L, Tseng T-K, Holloway PH. Quantum dots and their multimodal applications: a review. Materials. 2010;3(4):2260–2345.

Pleskova S, Mikheeva E, Gornostaeva E. Using of quantum dots in biology and medicine. In: Saquib Q, Faisal M, Al-Khedhairy AA, Alatar AA, editors. Cellular and Molecular Toxicology of Nanoparticles. Cham: Springer International Publishing; 2018:323–334.

Schmidt R, Krasselt C, Göhler C, von Borczyskowski C. The fluorescence intermittency for quantum dots is not power-law distributed: a luminescence intensity resolved approach. ACS Nano. 2014;8(4):3506–3521. doi:10.1021/nn406562a

Walling MA, Novak JA, Shepard JRE. Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 2009;10(2):441–491. doi:10.3390/ ijms10020441

Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A multifunctional lipid-based nanodevice for the highly specific codelivery of sorafenib and midkine siRNA to hepatic cancer cells. Mol Pharm. 2019;16(9):4031–4044. doi:10.1021/acs.molpharmaceut.9b00738

Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–176. doi:10.3109/07388551.2015.1128876

Gouttefangeas C, Walter S, Welters MJP, Ottensmeier C, van der Burg SH, Chan C. Flow cytometry in cancer immunotherapy: applications, quality assurance, and future. In: Rezaei N, editor. Cancer Immunology: A Translational Medicine Context. Cham: Springer International Publishing; 2020:761–783.

Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013;67(3):215–252. doi:10.1366/12-06948

Wu X, Zhu W. Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem Soc Rev. 2015;44 (13):4179–4184. doi:10.1039/C4CS00152D

Cabral Filho PE, Pereira MIA, Fernandes HP, et al. Blood group antigen studies using CdTe quantum dots and flow cytometry. Int J Nanomedicine. 2015;10:4393–4404. doi:10.2147/IJN.S84551

Chattopadhyay PK. Chapter 18 - Quantum dot technology in flow cytometry. In: Darzynkiewicz Z, Holden E, Orfao A, Telford W, Wlodkowic D, editors. Methods in Cell Biology. Vol. 102. Academic Press; 2011:463–477.

Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387. doi:10.1038/nrc1071

Satrialdi MR, Biju V, Takano Y, Harashima H, Yamada Y. The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter. Chem Commun. 2020;56(7):1145–1148. doi:10.1039/C9CC08563G

Ahirwar S, Mallick S, Bahadur D. Photodynamic therapy using graphene quantum dot derivatives. J Solid State Chem. 2020;282:121107. doi:10.1016/j.jssc.2019.121107

Łoczechin A, Séron K, Barras A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11(46):42964–42974. doi:10.1021/acsami.9b15032

Sanchez de Araujo H, Ferreira F. Quantum dots and photodynamic therapy in COVID-19 treatment. Lancet Digit Health. 2021;3(4):e78. doi:10.1016/S2589-7500(20)30274-0

Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H-W, Mozafari M. Quantum dots: a review from concept to clinic. Biotechnol J. 2020;15(12):2000117.

Bao W, Ma H, Wang N, He Z. pH-sensitive carbon quantum dots−doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polym Adv Technol. 2019;30(11):2664–2673. doi:10.1021/acs.bioconjchem.9b00573

Younis MA, Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release. 2021;331:335–349. doi:10.1016/j.jconrel.2021.01.021

Younis MA, Khalil IA, Harashima H. Gene therapy for hepatocellular carcinoma: highlighting the journey from theory to clinical applications. Adv Therapeut. 2020;3(11):2000087.

Iannazzo D, Pistone A, Celesti C, et al. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials.2019;9(2):282.

Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. doi:10.1016/j.addr.2021.114083

Ulusoy M, Jonczyk R, Walter J-G, et al. Aqueous synthesis of PEGylated quantum dots with increased colloidal stability and reduced cytotoxicity. Bioconjug Chem. 2016;27(2):414–426. doi:10.1021/acs.bioconjchem.5b00491

Liu L, Jiang H, Dong J, et al. PEGylated MoS(2) quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids Surf B Biointerfaces. 2020;185:110590. doi:10.1016/j.colsurfb.2019.110590

Mangeolle T, Yakavets I, Lequeux N, Pons T, Bezdetnaya L, Marchal F. The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. Photodiagnosis Photodyn Ther. 2019;26:150–156. doi:10.1016/j.pdpdt.2019.03.010

Zhao Y, Liu S, Li Y, et al. Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci. 2010;350(1):44–50. doi:10.1016/j.jcis.2010.05.035

Song EQ, Zhang ZL, Luo QY, Lu W, Shi YB, Pang DW. Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis. Clin Chem. 2009;55(5):955–963. doi:10.1373/clinchem.2008.113423

Abdellatif AAH, Abou-Taleb HA, Abd El Ghany AA, Lutz I, Bouazzaoui A. Targeting of somatostatin receptors expressed in blood cells using quantum dots coated with vapreotide. Saudi Pharm J. 2018;26(8):1162–1169. doi:10.1016/j.jsps.2018.07.004

Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;110(1):138–155. doi:10.1093/toxsci/kfp087

Zhang LW, Bäumer W, Monteiro-Riviere NA. Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine. 2011;6(5):777–791. doi:10.2217/nnm.11.73

Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45. doi:10.1124/pr.58.1.8

Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–5431. doi:10.2147/IJN.S138624

Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8. doi:10.1042/EBC20150001

Ma F, Li C-C, Zhang C-Y. Development of quantum dot-based biosensors: principles and applications. J Mater Chem B. 2018;6 (39):6173–6190. doi:10.1039/C8TB01869C

Ravi P, Ganesan M. Quantum dots as biosensors in the determination of biochemical parameters in xenobiotic exposure and toxins. Anal Sci. 2021;37(5):661–671. doi:10.2116/analsci.20SCR03

Zheng G, Li S, Zhang T, et al. Water pollution control and treatment based on quantum dot chemical and biological high sensitivity sensing. J Sens. 2021;2021:8704363. doi:10.1155/2021/8704363

Shen P, Xia Y. Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem. 2014;86(11):5323–5329. doi:10.1021/ac5001338

Nideep TK, Ramya M, Sony U, Kailasnath M. MSA capped CdTe quantum dots for pH sensing application. Mater Res Express. 2019;6 (10):105002. doi:10.1088/2053-1591/ab35a0

Zhang L, Chen L. Fluorescence probe based on hybrid Mesoporous Silica/Quantum Dot/Molecularly imprinted polymer for detection of tetracycline. ACS Appl Mater Interfaces. 2016;8(25):16248–16256. doi:10.1021/acsami.6b04381

Ding R, Chen Y, Wang Q, et al. Recent advances in quantum dots-based biosensors for antibiotic detection. J Pharmaceut Anal. 2021. doi:10.1016/j.jpha.2021.08.002

Özcan N, Karaman C, Atar N, Karaman O, Yola ML. A novel molecularly imprinting biosensor including graphene quantum dots/Multi-Walled carbon nanotubes composite for interleukin-6 detection and electrochemical biosensor validation. ECS J Solid State Sci Technol. 2020;9 (12):121010. doi:10.1149/2162-8777/abd149

Wang Y, Zhang Y, Du Z, Wu M, Zhang G. Detection of micrometastases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine. 2012;7:2315–2324. doi:10.2147/IJN.S30593

Elmizadeh H, Faridbod F, Soleimani M, Ganjali MR, Bardajee GR. Fluorescent apta-nanobiosensors for fast and sensitive detection of digoxin in biological fluids using rGQDs: comparison of two approaches for immobilization of aptamer. Sens Actuators B Chem. 2020;302:127133. doi:10.1016/j.snb.2019.127133

Opublikowane

8 czerwca 2023