Immunoterapia nowotworów z wykorzystaniem inhibitorów PD-1/PD-L1 oraz CTLA-4

Autorzy

Tymoteusz Borowski - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Maria Zimoń; Nina Jankowska; Joanna Bogacz; Mateusz Gołębiowski

Streszczenie

Istnieje wiele cząsteczek będących negatywnymi regulatorami układu immunologicznego, które naturalnie występują w ludzkim organizmie. Fizjologicznie służą one do wygaszania reakcji odpornościowej. Zauważono jednak, iż blokowanie tych cząsteczek za pomocą specyficznych inhibitorów wzmaga odpowiedź immunologiczną, w tym aktywność przeciwnowotworową. Szczególny potencjał w tym obszarze wykazują inhibitory CTLA-4 oraz PD-1/PD-L1 jako inhibitory punktów kontrolnych w procesie negatywnej regulacji układu odpornościowego, gdyż obie te cząsteczki hamują aktywację limfocytów T. Liczne badania i odkrycia w tej dziedzinie wpłynęły na rozwój immunoterapii nowotworów – alternatywy dla dotychczasowych metod leczenia.

Rozdziały

  • Immunoterapia nowotworów z wykorzystaniem inhibitorów PD-1/PD-L1 oraz CTLA-4
    Tymoteusz Borowski, Maria Zimoń, Nina Jankowska, Joanna Bogacz, Mateusz Gołębiowski

Bibliografia

Mortezaee K, Majidpoor J, Najafi S. VISTA immune regulatory effects in bypassing cancer immunotherapy: Updated. Life Sciences. 2022;310:121083. doi:10.1016/j.lfs.2022.121083

Fujiwara Y, Kato S, Nesline MK, et al. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treatment Reviews. 2022;110:102461. doi:10.1016/j.ctrv.2022.102461

Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy. J Immunother Cancer. 2020;8(2):e000957. doi:10.1136/jitc-2020-000957

Zhang H, Dai Z, Wu W, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 2021;40(1):184. doi:10.1186/s13046-021-01987-7

Christofides A, Katopodi XL, Cao C, et al. SHP-2 and PD-1-SHP-2 signaling regulate myeloid cell differentiation and antitumor responses. Nat Immunol. 2023;24(1):55-68. doi:10.1038/s41590-022-01385-x

Fan Z, Wu C, Chen M, et al. The generation of PD-L1 and PD-L2 in cancer cells: From nuclear chromatin reorganization to extracellular presentation. Acta Pharmaceutica Sinica B. 2022;12(3):1041-1053. doi:10.1016/j.apsb.2021.09.010

Yu M, Peng Z, Qin M, et al. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Molecular Cell. 2021;81(6):1216-1230.e9. doi:10.1016/j.molcel.2021.01.010

Li L, Zhang Y, Hu W, et al. MTHFD2 promotes PD-L1 expression via activation of the JAK/STAT signalling pathway in bladder cancer. Journal of Cellular and Molecular Medicine. 2023;27(19):2922-2936. doi:10.1111/jcmm.17863

Zhang Y, Song Q, Cassady K, et al. Blockade of trans PD-L1 interaction with CD80 augments antitumor immunity. Proceedings of the National Academy of Sciences. 2023;120(16):e2205085120. doi:10.1073/pnas.2205085120

Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350-1355. doi:10.1126/science.aar4060

Acúrcio RC, Pozzi S, Carreira B, et al. Therapeutic targeting of PD-1/PD-L1 blockade by novel small-molecule inhibitors recruits cytotoxic T cells into solid tumor microenvironment. J Immunother Cancer. 2022;10(7):e004695. doi:10.1136/jitc-2022-004695

Kazandjian D, Suzman DL, Blumenthal G, et al. FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer With Progression On or After Platinum-Based Chemotherapy. The Oncologist. 2016;21(5):634-642. doi:10.1634/theoncologist.2015-0507

Markham A. Atezolizumab: First Global Approval. Drugs. 2016;76(12):1227-1232. doi:10.1007/s40265-016-0618-8

Kim ES. Avelumab: First Global Approval. Drugs. 2017;77(8):929-937. doi:10.1007/s40265-017-0749-6

Vugt MJH van, Stone JA, Greef “Rik” H. J. M. M. De, et al. Immunogenicity of pembrolizumab in patients with advanced tumors. J Immunother Cancer. 2019;7(1):212. doi:10.1186/s40425-019-0663-4

Himmelsbach V, Pinter M, Scheiner B, et al. Efficacy and Safety of Atezolizumab and Bevacizumab in the Real-World Treatment of Advanced Hepatocellular Carcinoma: Experience from Four Tertiary Centers. Cancers. 2022;14(7):1722. doi:10.3390/cancers14071722

Córdova-Bahena L, Velasco-Velázquez MA. Anti-PD-1 And Anti-PD-L1 Antibodies as Immunotherapy Against Cancer: A Structural Perspective. Revista de Investigación Clínica. 2021;73(1). doi:10.24875/RIC.20000341

Kim TK, Herbst RS, Chen L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends in Immunology. 2018;39(8):624-631. doi:10.1016/j.it.2018.05.001

Wang Y, Zhou S, Yang F, et al. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-analysis. JAMA Oncology. 2019;5(7):1008-1019. doi:10.1001/jamaoncol.2019.0393

Zhan MM, Hu XQ, Liu XX, Ruan BF, Xu J, Liao C. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discovery Today. 2016;21(6):1027-1036. doi:10.1016/j.drudis.2016.04.011

Arlauckas SP, Garris CS, Kohler RH, et al. In vivo imaging reveals a tumor-associated macrophage–mediated resistance pathway in anti–PD-1 therapy. Science Translational Medicine. 2017;9(389):eaal3604. doi:10.1126/scitranslmed.aal3604

Chen FF, Li Z, Ma D, Yu Q. Small-molecule PD-L1 inhibitor BMS1166 abrogates the function of PD-L1 by blocking its ER export. OncoImmunology. 2020;9(1):1831153. doi:10.1080/2162402X.2020.1831153

Cheng B, Wang W, Liu T, et al. Bifunctional small molecules targeting PD-L1/CXCL12 as dual immunotherapy for cancer treatment. Sig Transduct Target Ther. 2023;8(1):1-3. doi:10.1038/s41392-022-01292-5

Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58-67. doi:10.1182/blood-2017-06-741033

Zhao Y, Yang W, Huang Y, Cui R, Li X, Li B. Evolving Roles for Targeting CTLA-4 in Cancer Immunotherapy. Cellular Physiology and Biochemistry. 2018;47(2):721-734. doi:10.1159/000490025

Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. OncoImmunology. 2016;5(6):e1163462. doi:10.1080/2162402X.2016.1163462

Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American Journal of Clinical Oncology. 2016;39(1):98. doi:10.1097/COC.0000000000000239

Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers. 2021;13(6):1440. doi:10.3390/cancers13061440

Genovese Mark C., Becker Jean-Claude, Schiff Michael, et al. Abatacept for Rheumatoid Arthritis Refractory to Tumor Necrosis Factor α Inhibition. New England Journal of Medicine. 2005;353(11):1114-1123. doi:10.1056/NEJMoa050524

Khoury SJ, Rochon J, Ding L, et al. ACCLAIM: A randomized trial of abatacept (CTLA4-Ig) for relapsing-remitting multiple sclerosis. Mult Scler. 2017;23(5):686-695. doi:10.1177/1352458516662727

Jovčevska I, Muyldermans S. The Therapeutic Potential of Nanobodies. BioDrugs. 2020;34(1):11-26. doi:10.1007/s40259-019-00392-z

Lipson EJ, Drake CG. Ipilimumab: An Anti-CTLA-4 Antibody for Metastatic Melanoma. Clin Cancer Res. 2011;17(22):6958-6962. doi:10.1158/1078-0432.CCR-11-1595

Babamohamadi M, Mohammadi N, Faryadi E, et al. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis. 2024;15(1):17. doi:10.1038/s41419-023-06391-x

Joshua AM, Monzon JG, Mihalcioiu C, Hogg D, Smylie M, Cheng T. A phase 2 study of tremelimumab in patients with advanced uveal melanoma. Melanoma Research. 2015;25(4):342. doi:10.1097/CMR.0000000000000175

Arbabi-Ghahroudi M. Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Front Immunol. 2017;8:1589. doi:10.3389/fimmu.2017.01589

Behdani M, Zeinali S, Khanahmad H, et al. Generation and characterization of a functional Nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Molecular Immunology. 2012;50(1):35-41. doi:10.1016/j.molimm.2011.11.013

Hwang I, Kim JW, Ylaya K, et al. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med. 2020;18:443. doi:10.1186/s12967-020-02618-z

Lecocq Q, De Vlaeminck Y, Hanssens H, et al. Theranostics in immuno-oncology using nanobody derivatives. Theranostics. 2019;9(25):7772-7791. doi:10.7150/thno.34941

Kankeu Fonkoua LA, Sirpilla O, Sakemura R, Siegler EL, Kenderian SS. CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities. Molecular Therapy - Oncolytics. 2022;25:69-77. doi:10.1016/j.omto.2022.03.009

Xie YQ, Wei L, Tang L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. WIREs Nanomedicine and Nanobiotechnology. 2018;10(4):e1506. doi:10.1002/wnan.1506

Tang Z, Mo F, Liu A, et al. A Nanobody Against CTLA-4 Increases the Anti-Tumor Effects of Specific CD8+ T Cells. J Biomed Nanotechnol. 2019;15(11):2229-2239. doi:10.1166/jbn.2019.2859

Arce Vargas F, Furness AJS, Litchfield K, et al. Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies. Cancer Cell. 2018;33(4):649-663.e4. doi:10.1016/j.ccell.2018.02.010

Sato Y, Casson CN, Matsuda A, et al. Fc-independent functions of anti-CTLA-4 antibodies contribute to anti-tumor efficacy. Cancer Immunol Immunother. 2022;71(10):2421-2431. doi:10.1007/s00262-022-03170-z

Postow Michael A., Chesney Jason, Pavlick Anna C., et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. New England Journal of Medicine. 2015;372(21):2006-2017. doi:10.1056/NEJMoa1414428

Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. JCO. 2015;33(17):1974-1982. doi:10.1200/JCO.2014.59.4358

Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2017;377(14):1345-1356. doi:10.1056/NEJMoa1709684

Opublikowane

23 września 2024