Zastosowanie DMT w leczeniu stwardnienia rozsianego

Autorzy

Anna Cidyło
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Amelia Kłonica
Kacper Jaros

Słowa kluczowe:

stwardnienie rozsiane, nn-dimetylotryptamina, leczenie, DMT

Streszczenie

N,N-dimetylotryptamina (DMT) jest alkaloidem indolowym zawierającym grupy tryptaminy znane jako dwumetylowe pochodne tryptaminy. Substancja ta zaliczana jest do psychodelików oraz występuje endogennie u roślin, zwierząt. U ludzi wykazuje obecność szczególnie w osoczu ,moczu i płynie mózgowo-rdzeniowym.  DMT jako psychoplastogen wykazuje wpływ na układ nerwowy poprzez regulację wzrostu i pobudzeń nerwowych, który wzmacnia zdolności do adaptacji i poprawia funkcjonalność neuronalną. Znalazło to szczególne zastosowanie w leczeniu zaburzeń depresyjnych, lękowych czy chorób neurodegeneracyjnych. Do tych ostatnich zaliczamy stwardnienie rozsiane w postaci rzutowo-remisyjnej (ang. relapsing-remitting multiple sclerosis, RRMS), w których DMT zmniejsza zarówno liczbę jak i nasilenie powtarzających się nawrotów poprzez opóźnianie uszkadzających się nerwów. We wczesnych stadiach wprowadzenie odpowiednio dostosowanej terapii dla pacjenta, może prowadzić do poprawy długoterminowych wyników klinicznych. Celem pracy jest ukazanie unikatowych właściwości DMT w powiązaniu z funkcjonalnością układu nerwowego. 

Bibliografia

Lassmann H. Mechanisms of demyelination and tissue destruction in multiple sclerosis. Clinical Neurology and Neurosurgery. 2002;104(3):168-171. doi:https://doi.org/10.1016/s0303-8467(02)00033-1

Bielecki B, Mycko MP, Tronczyńska E, et al. A whole genome screen for association in Polish multiple sclerosis patients. Journal of neuroimmunology. 2003;143(1-2):107-111. doi:https://doi.org/10.1016/j.jneuroim.2003.08.022

Achiron A, Gurevich M, Friedman N, Kaminski N, Mandel M. Blood transcriptional signatures of multiple sclerosis: Unique gene expression of disease activity. Annals of Neurology. 2004;55(3):410-417. doi:https://doi.org/10.1002/ana.20008

Ibrahim SM, Gold R. Genomics, proteomics, metabolomics: what is in a word for multiple sclerosis? Current Opinion in Neurology. 2005;18(3):231-235. doi:https://doi.org/10.1097/01.wco.0000169738.06664.3b

Takahashi K. The regulatory role of natural killer cells in multiple sclerosis. Brain. 2004;127(9):1917-1927. doi:https://doi.org/10.1093/brain/awh219

Axelrod J. Enzymatic Formation of Psychotomimetic Metabolites from Normally Occurring Compounds. Science. 1961;134(3475):343-343. doi:https://doi.org/10.1126/science.134.3475.343

Bajjig A, Cayetanot F, Taylor JA, Bodineau L, Vivodtzev I. Serotonin 1A Receptor Pharmacotherapy and Neuroplasticity in Spinal Cord Injury. Pharmaceuticals. 2022;15(4):460. doi:https://doi.org/10.3390/ph15040460

Barker SA. Administration of N,N-dimethyltryptamine (DMT) in psychedelic therapeutics and research and the study of endogenous DMT. Psychopharmacology. Published online January 22, 2022. doi:https://doi.org/10.1007/s00213-022-06065-0

Barker SA. N, N-Dimethyltryptamine (DMT), an Endogenous Hallucinogen: Past, Present, and Future Research to Determine Its Role and Function. Frontiers in Neuroscience. 2018;12(536). doi:https://doi.org/10.3389/fnins.2018.00536

Allahtavakoli M, Jarrott B. Sigma-1 receptor ligand PRE-084 reduced infarct volume, neurological deficits, pro-inflammatory cytokines and enhanced anti-inflammatory cytokines after embolic stroke in rats. Brain Research Bulletin. 2011;85(3-4):219-224. doi:https://doi.org/10.1016/j.brainresbull.2011.03.019

Balasuriya D, Stewart AP, Edwardson JM. The -1 Receptor Interacts Directly with GluN1 But Not GluN2A in the GluN1/GluN2A NMDA Receptor. Journal of Neuroscience. 2013;33(46):18219-18224. doi:https://doi.org/10.1523/jneurosci.3360-13.2013

Barker SA, McIlhenny EH, Strassman R. A critical review of reports of endogenous psychedelic N, N-dimethyltryptamines in humans: 1955-2010. Drug Testing and Analysis. 2012;4(7-8):617-635. doi:https://doi.org/10.1002/dta.422

Schimmelpfennig J, Kamila Jankowiak-Siuda. Unique biological and physiological properties of endogenous N, N-dimethyltryptamine from the perspective of functioning of the nervous system. Neuropsychiatria i Neuropsychologia. 2023;18(1-2):1-10. doi:https://doi.org/10.5114/nan.2023.129068

Frecska E, Szabo A, Winkelman MJ, Luna LE, McKenna DJ. A possibly sigma-1 receptor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity. Journal of neural transmission (Vienna, Austria : 1996). 2013;120(9):1295-1303. doi:https://doi.org/10.1007/s00702-013-1024-y

Beaton JM, Morris PE. Ontogeny of N,N-Dimethyltryptamine and related indolealkylamine levels in neonatal rats. Mechanisms of Ageing and Development. 1984;25(3):343-347. doi:https://doi.org/10.1016/0047-6374(84)90007-1

Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 2014;83(3):278-286. doi:https://doi.org/10.1212/wnl.0000000000000560

Stuart WH. Clinical management of multiple sclerosis: the treatment paradigm and issues of patient management. Journal of managed care pharmacy: JMCP. 2004;10(3 Suppl B):S19-25.

Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and Progression of Disability in Multiple Sclerosis. New England Journal of Medicine. 2000;343(20):1430-1438. doi:https://doi.org/10.1056/nejm200011163432001

Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Revue neurologique. 2016;172(1):3-13. doi:https://doi.org/10.1016/j.neurol.2015.10.006

Weinshenker BG. Neuromyelitis optica: what it is and what it might be. The Lancet. 2003;361(9361):889-890. doi:https://doi.org/10.1016/s0140-6736(03)12784-5

Compston A, Coles A. Multiple sclerosis. The Lancet. 2002;359(9313):1221-1231. doi:https://doi.org/10.1016/s0140-6736(02)08220-x

McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Annals of Neurology. 2001;50(1):121-127. doi:https://doi.org/10.1002/ana.1032

Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of Neurology. 2011;69(2):292-302. doi:https://doi.org/10.1002/ana.22366

Hartel M., Kluczewska W., Sąsiadek M. Zalecenia Polskiego Lekarskiego Towarzystwa Radiologicznego dotyczące protokołu badania MR u chorych na stwardnienie rozsiane. MS Report 2015; 3: 5–7.

Aj T, Bl B, F B, et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. The Lancet. Neurology. Published February 1, 2018.

Montalban X, Sastre-Garriga J, Filippi M, et al. Primary progressive multiple sclerosis diagnostic criteria: a reappraisal. Multiple sclerosis (Houndmills, Basingstoke, England). 2009;15(12):1459-1465. doi:https://doi.org/10.1177/1352458509348422

Wiendl H, Gold R, Berger T, et al. Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Therapeutic Advances in Neurological Disorders. 2021;14:175628642110396. doi:https://doi.org/10.1177/17562864211039648

O’Connor P, Devonshire V, Canadian Network of MS Clinic. The use of disease-modifying agents in multiple sclerosis--by the Canadian Network of MS Clinics. The Canadian Journal of Neurological Sciences Le Journal Canadien Des Sciences Neurologiques. 2008;35(2):127-132. Accessed May 29, 2024.

Weber M, Menge T, Klaus Lehmann-Horn, et al. Current Treatment Strategies for Multiple Sclerosis - Efficacy Versus Neurological Adverse Effects. 2012;18(2):209-219. doi:https://doi.org/10.2174/138161212799040501

Baumeister D, Barnes G, Giaroli G, Tracy D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Therapeutic Advances in Psychopharmacology. 2014;4(4):156-169. doi:https://doi.org/10.1177/2045125314527985

Nichols DE. Psychedelics. Pharmacological Reviews. 2016;68(2):264-355. doi:https://doi.org/10.1124/pr.115.011478

Das S, Barnwal P, Ramasamy A, Sen S, Mondal S. Lysergic acid diethylamide: a drug of “use”?. Therapeutic Advances in Psychopharmacology. 2016;6(3):214-228. doi:https://doi.org/10.1177/2045125316640440

Maurice T, Romieu P. Involvement of the sigma1 receptor in the appetitive effects of cocaine. Pharmacopsychiatry. 2004;37 Suppl 3:S198-207. doi:https://doi.org/10.1055/s-2004-832678

Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacology & Therapeutics. 2009;124(2):195-206. doi:https://doi.org/10.1016/j.pharmthera.2009.07.001

Tsai SY, Hayashi T, Harvey BK, et al. Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1·GTP pathway. Proceedings of the National Academy of Sciences. 2009;106(52):22468-22473. doi:https://doi.org/10.1073/pnas.0909089106

Meunier J, Hayashi T. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. The Journal of Pharmacology and Experimental Therapeutics. 2010;332(2):388-397. doi:https://doi.org/10.1124/jpet.109.160960

Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Annals of Neurology. 2011;70(6):913-919. doi:https://doi.org/10.1002/ana.22534

Oxombre B, Lee-Chang C, Duhamel A, et al. High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis. British Journal of Pharmacology. 2015;172(7):1769-1782. doi:https://doi.org/10.1111/bph.13037

Bourke JH, Wall MB. phMRI: methodological considerations for mitigating potential confounding factors. Frontiers in Neuroscience. 2015;9. doi:https://doi.org/10.3389/fnins.2015.00167

Miller MJ, Albarracin-Jordan J, Moore C, Capriles JM. Chemical evidence for the use of multiple psychotropic plants in a 1,000-year-old ritual bundle from South America. Proceedings of the National Academy of Sciences. 2019;116(23):201902174. doi:https://doi.org/10.1073/pnas.1902174116

Nichols DE, Johnson MW, Nichols CD. Psychedelics as Medicines: An Emerging New Paradigm. Clinical pharmacology and therapeutics. 2017;101(2):209-219. doi:https://doi.org/10.1002/cpt.557

Carhart-Harris R, Giribaldi B, Watts R, et al. Trial of Psilocybin versus Escitalopram for Depression. New England Journal of Medicine. 2021;384(15):1402-1411. doi:https://doi.org/10.1056/nejmoa2032994

Goodwin GM, Aaronson ST, Alvarez O, et al. Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. New England Journal of Medicine. 2022;387(18):1637-1648. doi:https://doi.org/10.1056/nejmoa2206443

Ly C, Greb AC, Cameron LP, et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Reports. 2018;23(11):3170-3182. doi:https://doi.org/10.1016/j.celrep.2018.05.022

Shao LX, Liao C, Gregg I, et al. Psilocybin Induces Rapid and Persistent Growth of Dendritic Spines in Frontal Cortex In vivo. Neuron. 2021;109(16). doi:https://doi.org/10.1016/j.neuron.2021.06.008

Daws RE, Timmermann C, Giribaldi B, et al. Increased Global Integration in the Brain after Psilocybin Therapy for Depression. Nature Medicine. 2022;28(4):844-851. doi:https://doi.org/10.1038/s41591-022-01744-z

Jakimovski D, Kolb C, Ramanathan M, Zivadinov R, Weinstock-Guttman B. Interferon β for Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine. 2018;8(11):a032003. doi:https://doi.org/10.1101/cshperspect.a032003

Patten SB, Francis G, Metz LM, Lopez-Bresnahan M, Chang P, Curtin F. The relationship between depression and interferon beta-1a therapy in patients with multiple sclerosis. Multiple Sclerosis Journal. 2005;11(2):175-181. doi:https://doi.org/10.1191/1352458505ms1144oa

Alba Palé L, León Caballero J, Samsó Buxareu B, Salgado Serrano P, Pérez Solà V. Systematic review of depression in patients with multiple sclerosis and its relationship to interferonβ treatment. Multiple Sclerosis and Related Disorders. 2017;17:138-143. doi:https://doi.org/10.1016/j.msard.2017.07.008

Weinstock-Guttman B, Nair KV, Glajch JL, Ganguly TC, Kantor D. Two decades of glatiramer acetate: From initial discovery to the current development of generics. Journal of the Neurological Sciences. 2017;376:255-259. doi:https://doi.org/10.1016/j.jns.2017.03.030

Ziemssen T, Ashtamker N, Rubinchick S, Knappertz V, Comi G. Long-term safety and tolerability of glatiramer acetate 20 mg in the treatment of relapsing forms of multiple sclerosis. Expert Opinion on Drug Safety. Published online December 17, 2016. doi:https://doi.org/10.1080/14740338.2017.1274728

Ozel O, Vaughn CB, Eckert SP, Jakimovski D, Lizarraga AA, Weinstock-Guttman B. Dimethyl Fumarate in the Treatment of Relapsing-Remitting Multiple Sclerosis: Patient Reported Outcomes and Perspectives. Patient Related Outcome Measures. 2019;Volume 10:373-384. doi:https://doi.org/10.2147/prom.s168095

Gold R, Kappos L, Arnold DL, et al. Placebo-Controlled Phase 3 Study of Oral BG-12 for Relapsing Multiple Sclerosis. New England Journal of Medicine. 2012;367(12):1098-1107. doi:https://doi.org/10.1056/nejmoa1114287

Fox RJ, Miller DH, Phillips JT, et al. Placebo-Controlled Phase 3 Study of Oral BG-12 or Glatiramer in Multiple Sclerosis. New England Journal of Medicine. 2012;367(12):1087-1097. doi:https://doi.org/10.1056/nejmoa1206328

Tran JQ, Hartung JP, Peach RJ, et al. Results From the First-in-Human Study With Ozanimod, a Novel, Selective Sphingosine-1-Phosphate Receptor Modulator. The Journal of Clinical Pharmacology. 2017;57(8):988-996. doi:https://doi.org/10.1002/jcph.887

Chaudhry BZ, Cohen JA, Conway DS. Sphingosine 1-Phosphate Receptor Modulators for the Treatment of Multiple Sclerosis. Neurotherapeutics. 2017;14(4):859-873. doi:https://doi.org/10.1007/s13311-017-0565-4

Cohen JA, Comi G, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. The Lancet Neurology. 2019;18(11):1021-1033. doi:https://doi.org/10.1016/s1474-4422(19)30238-8

Comi G, Kappos L, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. The Lancet Neurology. 2019;18(11):1009-1020. doi:https://doi.org/10.1016/s1474-4422(19)30239-x

Finkelsztejn A. Multiple Sclerosis: Overview of Disease-Modifying Agents. Perspectives in Medicinal Chemistry. 2014;6:PMC.S13213. doi:https://doi.org/10.4137/pmc.s13213

Thompson C, Szabo A. Psychedelics as a novel approach to treating autoimmune conditions. Immunology Letters. 2020;228:45-54. doi:https://doi.org/10.1016/j.imlet.2020.10.001

Meneghini M, Bestard O, Grinyo JM. Immunosuppression in gastroenterology and hepatology. Best Practice & Research Clinical Gastroenterology. 2021;54-55:101757. doi:https://doi.org/10.1016/j.bpg.2021.101757

Opublikowane

13 sierpnia 2024