Postępy w leczeniu stwardnienia rozsianego

Autorzy

Matylda Kujawińska
Studenckie Koło Naukowe im. Zbigniewa Religii przy Katedrze Biofizyki w Zabrzu, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Iga Kwas
Piotr Ziobro
Justyna Zientek

Streszczenie

Stwardnienie rozsiane to przewlekła choroba zapalno-demielinizacyjna ośrodkowego układu nerwowego prowadząca do nieurazowej niepełnosprawności. Dochodzi w niej do wieloogniskowego uszkodzenia tkanki nerwowej. Ma przebieg fazowy z okresami zaostrzeń i remisji. Diagnozowana jest najczęściej między 20, a 40 rokiem życia.Choruje na nią około 46 tysięcy Polaków, w czym przeważającą grupą chorych stanowią kobiety. Obecny rozwój medycyny, zainteresowanie chorobą i szersze badania nad etiologią SM doprowadziły do powstania nowych leków, a inne bardzo obiecujące są w fazie badań klinicznych. W tym rozdziale przedstawione zostaną najnowsze przeciwciała monoklonalne Ublituximab oraz Ofatumumab, jak również leki immunomodulujące Ozanimod, Ponesimod oraz inhibitory kinazy tyrozynowej Brutona będące w fazie badań klinicznych.

Bibliografia

Murray TJ. The history of multiple sclerosis: the changing frame of the disease over the centuries. J Neurol Sci. 2009;277 Suppl 1:S3-S8. doi:10.1016/S0022-510X(09)70003-6

Cotsapas C, Mitrovic M, Hafler D. Multiple sclerosis. Handb Clin Neurol. 2018;148:723-730. doi:10.1016/B978-0-444-64076-5.00046-6

Ascherio A, Munger KL. Epidemiology of Multiple Sclerosis: From Risk Factors to Prevention-An Update. Semin Neurol. 2016;36(2):103-114. doi:10.1055/s-0036-1579693

Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. 2015;28(3):193-205. doi:10.1097/WCO.0000000000000206

Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278-286. doi:10.1212/WNL.0000000000000560

Mariottini A, De Matteis E, Muraro PA. Haematopoietic Stem Cell Transplantation for Multiple Sclerosis: Current Status. BioDrugs. 2020;34(3):307-325. doi:10.1007/s40259-020-00414-1

Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol. 2022 Sep 23;13:996469. doi: 10.3389/fimmu.2022.996469. PMID: 36211343; PMCID: PMC9539795.

Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622-1636. doi:10.1016/S0140-6736(18)30481-1

Rodríguez Murúa S, Farez MF, Quintana FJ. The Immune Response in Multiple Sclerosis. Annu Rev Pathol. 2022;17:121-139. doi:10.1146/annurev-pathol-052920-040318

Haki M, Al-Biati HA, Al-Tameemi ZS, Ali IS, Al-Hussaniy HA. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine (Baltimore). 2024;103(8):e37297. doi:10.1097/MD.0000000000037297

Schiess N, Calabresi PA. Multiple Sclerosis. Semin Neurol. 2016;36(4):350-356. doi:10.1055/s-0036-1585456

Shah A, Panchal V, Patel K, et al. Pathogenesis and management of multiple sclerosis revisited. Dis Mon. 2023;69(9):101497. doi:10.1016/j.disamonth.2022.101497

Travers BS, Tsang BK, Barton JL. Multiple sclerosis: Diagnosis, disease-modifying therapy and prognosis. Aust J Gen Pract. 2022;51(4):199-206. doi:10.31128/AJGP-07-21-6103

Ömerhoca S, Akkaş SY, İçen NK. Multiple Sclerosis: Diagnosis and Differential Diagnosis. Noro Psikiyatr Ars. 2018;55(Suppl 1):S1-S9. doi: 10.29399/npa.23418. PMID: 30692847; PMCID: PMC6278620.

Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173. doi:10.1016/S1474-4422(17)30470-2

Pérez CA, Cuascut FX, Hutton GJ. Immunopathogenesis, Diagnosis, and Treatment of Multiple Sclerosis: A Clinical Update. Neurol Clin. 2023;41(1):87-106. doi:10.1016/j.ncl.2022.05.004

Jakimovski D, Bittner S, Zivadinov R, et al. Multiple sclerosis. Lancet. 2024;403(10422):183-202. doi:10.1016/S0140-6736(23)01473-3

Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014;14:58. Published 2014 Mar 25. doi:10.1186/1471-2377-14-58

Carter JL, Rodriguez M. Immunosuppressive treatment of multiple sclerosis. Mayo Clin Proc. 1989;64(6):664-669. doi:10.1016/s0025-6196(12)65345-2

Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis. 2023;15(1):e1583. doi:10.1002/wsbm.1583

Kuhlmann T, Moccia M, Coetzee T, et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78-88. doi:10.1016/S1474-4422(22)00289-7

Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 2000;355(9205):735-740. doi:10.1016/s0140-6736(00)01034-5

Hohlfeld R, Wekerle H. Drug insight: using monoclonal antibodies to treat multiple sclerosis. Nat Clin Pract Neurol. 2005;1(1):34-44. doi:10.1038/ncpneuro0016

Florou D, Katsara M, Feehan J, Dardiotis E, Apostolopoulos V. Anti-CD20 Agents for Multiple Sclerosis: Spotlight on Ocrelizumab and Ofatumumab. Brain Sci. 2020;10(10):758. Published 2020 Oct 20. doi:10.3390/brainsci10100758

AlDallal SM. Ofatumumab - a valid treatment option for chronic lymphocytic leukemia patients. Ther Clin Risk Manag. 2017;13:905-907. Published 2017 Jul 20. doi:10.2147/TCRM.S140023

de Sèze J, Maillart E, Gueguen A, et al. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front Immunol. 2023;14:1004795. Published 2023 Mar 23. doi:10.3389/fimmu.2023.1004795

Kang C, Blair HA. Ofatumumab: A Review in Relapsing Forms of Multiple Sclerosis [published correction appears in Drugs. 2021 Dec 29;:]. Drugs. 2022;82(1):55-62. doi:10.1007/s40265-021-01650-7

Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med. 2020;383(6):546-557. doi:10.1056/NEJMoa1917246

Samjoo IA, Worthington E, Drudge C, et al. Comparison of ofatumumab and other disease-modifying therapies for relapsing multiple sclerosis: a network meta-analysis. J Comp Eff Res. 2020;9(18):1255-1274. doi:10.2217/cer-2020-0122

Graf, J., Aktas, O., Rejdak, K. et al. Monoclonal Antibodies for Multiple Sclerosis: An Update. BioDrugs 33, 61–78 (2019).https://doi.org/10.1007/s40259-018-0327-9

Lee A. Ublituximab: First Approval. Drugs. 2023;83(5):455-459. doi:10.1007/s40265-023-01854-z

Delgado SR, Faissner S, Linker RA, Rammohan K. Key characteristics of anti-CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J Neurol. 2024;271(4):1515-1535. doi:10.1007/s00415-023-12007-3

TG Therapeutics Inc. BRIUMVI™ (ublituximab-xiiy): US prescribing information. 2022. https://dailymed.nlm.nih.gov/. Accessed 22 Feb 2023.

Margoni M, Preziosa P, Filippi M, Rocca MA. Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. J Neurol. 2022;269(3):1316-1334. doi:10.1007/s00415-021-10744-x

Alvarez E, Steinman L, Fox E, et al. Reduced disease progression with ublituximab vs teriflunomide in the phase 3 ULTIMATE I and II studies in relapsing multiple sclerosis [abstract no. DMT03 plus presentation]. Int J MS Care. 2022;24(Suppl 1):2.

Lassiter G, Melancon C, Rooney T, et al. Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Neurol Int. 2020;12(3):89-108. Published 2020 Dec 3. doi:10.3390/neurolint12030016

Sandborn WJ, Feagan BG, D'Haens G, et al. Ozanimod as Induction and Maintenance Therapy for Ulcerative Colitis. N Engl J Med. 2021;385(14):1280-1291. doi:10.1056/NEJMoa2033617

https://doi.org/10.18388/pb.2020_310

Sun Y, Yang Y, Wang Z, Jiang F, Chen Z, Wang Z. Ozanimod for Treatment of Relapsing-Remitting Multiple Sclerosis in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Pharmacol. 2020;11:589146. Published 2020 Nov 20. doi:10.3389/fphar.2020.589146

Swallow E, Patterson-Lomba O, Yin L, et al. Comparative safety and efficacy of ozanimod versus fingolimod for relapsing multiple sclerosis. J Comp Eff Res. 2020;9(4):275-285. doi:10.2217/cer-2019-0169

Fronza M, Lorefice L, Frau J, Cocco E. An Overview of the Efficacy and Safety of Ozanimod for the Treatment of Relapsing Multiple Sclerosis. Drug Des Devel Ther. 2021 May 11;15:1993-2004. doi: 10.2147/DDDT.S240861. PMID: 34007159; PMCID: PMC8123972.

Lamb YN. Ozanimod: First Approval. Drugs. 2020;80(8):841-848. doi:10.1007/s40265-020-01319-7

Multiple Sclerosis Agents. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; September 7, 2022.

Cree BA, Selmaj KW, Steinman L, et al. Long-term safety and efficacy of ozanimod in relapsing multiple sclerosis: Up to 5 years of follow-up in the DAYBREAK open-label extension trial [published correction appears in Mult Scler. 2022 Nov 30;:13524585221138507]. Mult Scler. 2022;28(12):1944-1962. doi:10.1177/13524585221102584

Gros B, Kaplan GG. Ulcerative Colitis in Adults: A Review. JAMA. 2023;330(10):951-965. doi:10.1001/jama.2023.15389

Faissner S, Gold R. Efficacy and Safety of Multiple Sclerosis Drugs Approved Since 2018 and Future Developments. CNS Drugs. 2022;36(8):803-817. doi:10.1007/s40263-022-00939-9

Markham A. Ponesimod: First Approval. Drugs. 2021;81(8):957-962. doi:10.1007/s40265-021-01523-z

Ianniello A, Pozzilli C. Ponesimod to treat multiple sclerosis. Drugs Today (Barc). 2021;57(12):745-758. doi:10.1358/dot.2021.57.12.3353166

Ruggieri S, Quartuccio ME, Prosperini L. Ponesimod in the Treatment of Relapsing Forms of Multiple Sclerosis: An Update on the Emerging Clinical Data. Degener Neurol Neuromuscul Dis. 2022;12:61-73. Published 2022 Mar 22. doi:10.2147/DNND.S313825

Elisa Baldin & Alessandra Lugaresi (2020): Ponesimod for the treatment of relapsing multiple sclerosis, Expert Opinion on Pharmacotherapy, DOI: 10.1080/14656566.2020.1799977

Kappos L, Fox RJ, Burcklen M, et al. Ponesimod Compared With Teriflunomide in Patients With Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study: A Randomized Clinical Trial. JAMA Neurol. 2021;78(5):558–567. doi:10.1001/jamaneurol.2021.0405

Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, Krupa A, Pawlak D. Bruton's Tyrosine Kinase Inhibitors (BTKIs): Review of Preclinical Studies and Evaluation of Clinical Trials. Molecules. 2023;28(5):2400. Published 2023 Mar 6. doi:10.3390/molecules28052400

Arsenault S, Benoit RY, Clift F, Moore CS. Does the use of the Bruton Tyrosine Kinase inhibitors and the c-kit inhibitor masitinib result in clinically significant outcomes among patients with various forms of multiple sclerosis?. Mult Scler Relat Disord. 2022;67:104164. doi:10.1016/j.msard.2022.104164

Nakhoda S, Vistarop A, Wang YL. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol. 2023;200(2):137-149. doi:10.1111/bjh.18418

Ringheim GE, Wampole M, Oberoi K. Bruton's Tyrosine Kinase (BTK) Inhibitors and Autoimmune Diseases: Making Sense of BTK Inhibitor Specificity Profiles and Recent Clinical Trial Successes and Failures. Front Immunol. 2021;12:662223. Published 2021 Nov 3. doi:10.3389/fimmu.2021.662223

Furman MJ, Meuth SG, Albrecht P, et al. B cell targeted therapies in inflammatory autoimmune disease of the central nervous system. Front Immunol. 2023;14:1129906. Published 2023 Mar 9. doi:10.3389/fimmu.2023.1129906

Greenberg BM. Bruton's Tyrosine Kinase Inhibitors for Multiple Sclerosis Treatment: A New Frontier. Neurol Clin. 2024;42(1):155-163. doi:10.1016/j.ncl.2023.07.006

Yong VW. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron. 2022;110(21):3534-3548. doi:10.1016/j.neuron.2022.06.023

Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol. 2023 May;19(5):289-304. doi: 10.1038/s41582-023-00800-7. Epub 2023 Apr 13. PMID: 37055617; PMCID: PMC10100639.

Shulga O, Chabanova A, Kotsiuba O. Bruton's tyrosine kinase inhibitors in the treatment of multiple sclerosis. Postep Psychiatr Neurol. 2023;32(1):23-30. doi:10.5114/ppn.2023.126319

Montalban X, Wallace D, Genovese MC, et al. Characterisation of the safety profile of evobrutinib in over 1000 patients from phase II clinical trials in multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus: an integrated safety analysis. J Neurol Neurosurg Psychiatry. 2023;94(1):1-9. doi:10.1136/jnnp-2022-328799

Montalban X, Wallace D, Genovese MC, et al. Characterisation of the safety profile of evobrutinib in over 1000 patients from phase II clinical trials in multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus: an integrated safety analysis. J Neurol Neurosurg Psychiatry. 2023;94(1):1-9. doi:10.1136/jnnp-2022-328799

Arnold DL, Elliott C, Martin EC, Hyvert Y, Tomic D, Montalban X. Effect of Evobrutinib on Slowly Expanding Lesion Volume in Relapsing Multiple Sclerosis: A Post Hoc Analysis of a Phase 2 Trial. Neurology. 2024;102(5):e208058. doi:10.1212/WNL.0000000000208058

Kebir H., Li C., May M., Church M., Shafaatian U.B., Alvarez J. The Bruton’s Tyrosine Kinase Inhibitor Evobrutinib Demonstrates Superior Efficacy in Targeting Compartmentalized Neuroinflammation Compared to Anti-CD20 Treatment. (S16.004). Monday, April 24 [Internet]. 2023 Apr 25; Available from: http://dx.doi.org/10.1212/wnl.0000000000204159

Geladaris A, Torke S, Weber MS. Bruton's Tyrosine Kinase Inhibitors in Multiple Sclerosis: Pioneering the Path Towards Treatment of Progression?. CNS Drugs. 2022;36(10):1019-1030. doi:10.1007/s40263-022-00951-z

Nicolas O, Moliner P, Soubayrol P, et al. Absorption, Metabolism, and Excretion of [14C]-Tolebrutinib After Oral Administration in Humans, Contribution of the Metabolites to Pharmacological Activity. Clin Drug Investig. 2023;43(8):653-665. doi:10.1007/s40261-023-01296-1

Owens TD, Smith PF, Redfern A, et al. Phase 1 clinical trial evaluating safety, exposure and pharmacodynamics of BTK inhibitor tolebrutinib (PRN2246, SAR442168). Clin Transl Sci. 2022;15(2):442-450. doi:10.1111/cts.13162

von Hundelshausen P, Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers (Basel). 2021;13(5):1103. Published 2021 Mar 4. doi:10.3390/cancers13051103

Reich DS, Arnold DL, Vermersch P, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021;20(9):729-738. doi:10.1016/S1474-4422(21)00237-4

Sriwastava S, Elkhooly M, Amatya S, et al. Recent advances in the treatment of primary and secondary progressive Multiple Sclerosis. J Neuroimmunol. Published online February 17, 2024. doi:10.1016/j.jneuroim.2024.578315

Gabizon R, London N. A Fast and Clean BTK Inhibitor. J Med Chem. 2020;63(10):5100-5101. doi:10.1021/acs.jmedchem.0c00597

Angst D, Gessier F, Janser P, et al. Discovery of LOU064 (Remibrutinib), a Potent and Highly Selective Covalent Inhibitor of Bruton's Tyrosine Kinase. J Med Chem. 2020;63(10):5102-5118. doi:10.1021/acs.jmedchem.9b01916

Nuesslein-Hildesheim B, Ferrero E, Schmid C, et al. Remibrutinib (LOU064) inhibits neuroinflammation driven by B cells and myeloid cells in preclinical models of multiple sclerosis. J Neuroinflammation. 2023;20(1):194. Published 2023 Aug 26. doi:10.1186/s12974-023-02877-9

Maurer M, Berger W, Giménez-Arnau A, et al. Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria [published correction appears in J Allergy Clin Immunol. 2023 Feb;151(2):579]. J Allergy Clin Immunol. 2022;150(6):1498-1506.e2. doi:10.1016/j.jaci.2022.08.027

Zapowiedzi

13 sierpnia 2024