Przegląd perspektyw innowacyjnego leczenia choroby Alzheimera

Autorzy

Michał Przywuski
Śląski Uniwersytet Medyczny
Małgorzata Stopyra
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Natalia Nafalska
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Krzysztof Feret
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

choroba Alzheimera, neurologia, nowe leki obniżające poziom glukozy, przeciwciała monoklonalne, terapia grami

Streszczenie

Choroba Alzheimera (ang. Alzheimer’s disease, AD) jest przyczyną coraz większego obciążenia opieki zdrowotnej oraz finansów krajów, w  których odsetek osób powyżej 65. roku życia jest znaczący w społeczeństwie. Brak terapii mogących cofnąć lub zatrzymać postęp choroby, a także niepokojące prognozy wzrostu liczby chorych zmotywowały do poszukiwania nowych form leczenia farmakologicznego. Niniejsza praca stanowi przegląd metaanaliz najnowszych kierunków terapii AD oraz ocenę ich skuteczności. Omówiono potencjał terapii takich jak: stosowanie przeciwciał monoklonalnych, antybiotykoterapia, farmakoterapia nowymi lekami obniżającymi poziom glukozy i grami. Pomimo zarejestrowania dwóch nowych leków przez Amerykańską Agencję Żywności i Leków potrzebne są dalsze badania potwierdzające skuteczność tych preparatów, a także prace nad lekami o innych punktach uchwytu w celu jak najlepszej kontroli choroby oraz poprawy komfortu życia osób z AD. 

Rozdziały

  • Przegląd perspektyw innowacyjnego leczenia choroby Alzheimera
    Michał Przywuski, Małgorzata Stopyra, Natalia Nafalska, Krzysztof Feret

Bibliografia

Lu, Y., Liu, Y. L. Educational tabletop group games applied to Alzheimer's disease care. Journal of Henan Medical College. 2019; 31(6):803–805.

Jose A. Soria Lopez, Hector M. et al. Chapter 13 - Alzheimer's disease. In: Steven T. Dekosky, Sanjay Asthana, ed. Handbook of Clinical Neurology. Elsevier; 2019:231-255.

World Health Organization. Dementia. Updated March 15, 2023. Assesed April 14, 2024. https://www.who.int/news-room/fact-sheets/detail/dementia

Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-1590. doi:10.1016/S0140-6736(20)32205-4

Burnham SC, Fandos N, Fowler C, et al. Longitudinal evaluation of the natural history of amyloid-β in plasma and brain. Brain Communications. 2020;2(1):fcaa041. doi: 10.1093/braincomms/fcaa041.

Fish PV, Steadman D, Bayle ED, Whiting P. New approaches for the treatment of Alzheimer's disease. Bioorg Med Chem Lett. 2019;29(2):125-133. doi:10.1016/j.bmcl.2018.11.034

Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43-51. doi:10.1016/j.biopsych.2014.05.006

Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med. 2011;3(77):77sr1. doi:10.1126/scitranslmed.3002369

Merritt. cz. I-XII. In: E. D. Louis, S. A. Mayer, J.M. Noble, ed. Neurologia t. 1. W. Turaj, Edra Urban & Partner, 2023

O’Brien J.T., Holmes C., Jones M. et al. Omówienie uaktualnionych wytycznych British Association for Psychopharmacology dotyczących farmakoterapii chorych z zespołami otępiennymi. Medycyna Praktyczna Psychiatria, Updated January 8, 2018 Assesed April 14, 2024. https://www.mp.pl/poz/psychiatria/inne_zaburzenia/171700,farmakoterapia-chorych-z-zespolami-otepiennymi-wytyczne

Vaz M, Silvestre S. Alzheimer's disease: Recent treatment strategies. Eur J Pharmacol. 2020;887:173554. doi:10.1016/j.ejphar.2020.173554

West T, Hu Y, Verghese PB, et al. Preclinical and Clinical Development of ABBV-8E12, a Humanized Anti-Tau Antibody, for Treatment of Alzheimer's Disease and Other Tauopathies. J Prev Alzheimers Dis. 2017;4(4):236-241. doi:10.14283/jpad.2017.36

Yanamandra K, Patel TK, Jiang H, et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med. 2017;9(386):eaal2029. doi:10.1126/scitranslmed.aal2029

Florian H, Wang D, Arnold SE, et al. Tilavonemab in early Alzheimer's disease: results from a phase 2, randomized, double-blind study. Brain. 2023;146(6):2275-2284. doi:10.1093/brain/awad024

Budd Haeberlein S, Aisen PS, Barkhof F, et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer's Disease. J Prev Alzheimers Dis. 2022;9(2):197-210. doi:10.14283/jpad.2022.30

Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer's Disease. Neurotherapeutics. 2023;20(1):195-206. doi:10.1007/s13311-022-01308-6

Tucker S, Möller C, Tegerstedt K, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis. 2015;43(2):575-588. doi:10.3233/JAD-140741

van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer's Disease. N Engl J Med. 2023;388(1):9-21. doi:10.1056/NEJMoa2212948

Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer's disease. Ageing Res Rev. 2021;68:101339. doi:10.1016/j.arr.2021.101339

Rahman A, Hossen MA, Chowdhury MFI, et al. Aducanumab for the treatment of Alzheimer's disease: a systematic review. Psychogeriatrics. 2023;23(3):512-522. doi:10.1111/psyg.12944

U.S. Food and Drug Administration. FDA Grants Accelerated Approval for Alzheimer's Drug. Updated October 10, 2018. Assesed April 14, 2024

Dean OM, Data-Franco J, Giorlando F, Berk M. Minocycline: therapeutic potential in psychiatry. CNS Drugs. 2012;26(5):391-401. doi:10.2165/11632000-000000000-00000

Singh H, Kakkar AK, Chauhan P. Repurposing minocycline for COVID-19 management: mechanisms, opportunities, and challenges. Expert Rev Anti Infect Ther. 2020;18(10):997-1003. doi:10.1080/14787210.2020.1782190

Howard R, Zubko O, Bradley R, et al. Minocycline at 2 Different Dosages vs Placebo for Patients With Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2020;77(2):164-174. doi:10.1001/jamaneurol.2019.3762

Tang H, Shao H, Shaaban CE, et al. Newer glucose-lowering drugs and risk of dementia: A systematic review and meta-analysis of observational studies. J Am Geriatr Soc. 2023;71(7):2096-2106. doi:10.1111/jgs.18306

Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer's disease: shared pathology and treatment?. Br J Clin Pharmacol. 2011;71(3):365-376. doi:10.1111/j.1365-2125.2010.03830.x

Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data [published correction appears in Cardiovasc Diabetol. 2019 Mar 1;18(1):23]. Cardiovasc Diabetol. 2018;17(1):157.. doi:10.1186/s12933-018-0800-2

Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi:10.1056/NEJMoa1603827

Sa-Nguanmoo P, Tanajak P, Kerdphoo S, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43-50. doi:10.1016/j.taap.2017.08.005

Lin B, Koibuchi N, Hasegawa Y, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014;13:148. doi:10.1186/s12933-014-0148-1

Rizvi SM, Shakil S, Biswas D, et al. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer's disease- diabetes type 2 linkage via an enzoinformatics study. CNS Neurol Disord Drug Targets. 2014;13(3):447-451. doi:10.2174/18715273113126660160

Shaikh S, Rizvi SM, Shakil S, Riyaz S, Biswas D, Jahan R. Forxiga (dapagliflozin): Plausible role in the treatment of diabetes-associated neurological disorders. Biotechnol Appl Biochem. 2016;63(1):145-150. doi:10.1002/bab.1319

Miller RA, Harrison DE, Allison DB, et al. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight. 2020 Nov;5(21):140019. doi: 10.1172/jci.insight.140019.

McClean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease. Neuropharmacology. 2014;76 Pt A:57-67. doi:10.1016/j.neuropharm.2013.08.005

Li Y, Duffy KB, Ottinger MA, et al. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer's disease. J Alzheimers Dis. 2010;19(4):1205-1219. doi:10.3233/JAD-2010-1314

Ma M, Hasegawa Y, Koibuchi N, et al. DPP-4 inhibition with linagliptin ameliorates cognitive impairment and brain atrophy induced by transient cerebral ischemia in type 2 diabetic mice. Cardiovasc Diabetol. 2015;14:54. doi:10.1186/s12933-015-0218-z

Jain S, Sharma B. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia. Physiol Behav. 2015;152(Pt A):182-193. doi:10.1016/j.physbeh.2015.09.007

Bernstein HG, Dobrowolny H, Keilhoff G, Steiner J. Dipeptidyl peptidase IV, which probably plays important roles in Alzheimer disease (AD) pathology, is upregulated in AD brain neurons and associates with amyloid plaques. Neurochem Int. 2018;114:55-57. doi:10.1016/j.neuint.2018.01.005

Wium-Andersen IK, Osler M, Jørgensen MB, Rungby J, Wium-Andersen MK. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: a nested case-control study. Eur J Endocrinol. 2019;181(5):499-507. doi:10.1530/EJE-19-0259

Mui JV, Zhou J, Lee S, et al. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors vs. Dipeptidyl Peptidase-4 (DPP4) Inhibitors for New-Onset Dementia: A Propensity Score-Matched Population-Based Study With Competing Risk Analysis. Front Cardiovasc Med. 2021;8:747620. doi:10.3389/fcvm.2021.747620

Bohlken J, Jacob L, Kostev K. Association Between the Use of Antihyperglycemic Drugs and Dementia Risk: A Case-Control Study. J Alzheimers Dis. 2018;66(2):725-732. doi:10.3233/JAD-180808

Nørgaard CH, Friedrich S, Hansen CT, et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: Data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimers Dement (N Y). 2022;8(1):e12268. doi:10.1002/trc2.12268

Zhou B, Zissimopoulos J, Nadeem H, Crane MA, Goldman D, Romley JA. Association between exenatide use and incidence of Alzheimer's disease. Alzheimers Dement (N Y). 2021;7(1):e12139. doi:10.1002/trc2.12139

Kim JY, Ku YS, Kim HJ, et al. Oral diabetes medication and risk of dementia in elderly patients with type 2 diabetes. Diabetes Res Clin Pract. 2019;154:116-123. doi:10.1016/j.diabres.2019.07.004

Chen KC, Chung CH, Lu CH, et al. Association between the Use of Dipeptidyl Peptidase 4 Inhibitors and the Risk of Dementia among Patients with Type 2 Diabetes in Taiwan. J Clin Med. 2020;9(3):660. doi:10.3390/jcm9030660

Tseng CH. Vildagliptin Has a Neutral Association With Dementia Risk in Type 2 Diabetes Patients. Front Endocrinol (Lausanne). 2021;12:637392. doi:10.3389/fendo.2021.637392

Nong Q., Chen G., Xie X., Liu S., Li X., Pan X. Research progress of non-drug therapy for senile dementia. Nursing Research. 2020;34(20), 3669-3673.

Cohen GD, Firth KM, Biddle S, Lloyd Lewis MJ, Simmens S. The First Therapeutic Game Specifically Designed and Evaluated for Alzheimer’s Disease. American Journal of Alzheimer’s Disease & Other Dementias®. 2009;23(6):540-551. doi:10.1177/1533317508323570

Fenney, A., Lee, T. D.. Exploring Spared Capacity in Persons With Dementia: What WiiTM Can Learn. Activities, Adaptation & Aging. 2010;34(4), 303–313. doi:10.1080/01924788.2010.525736.

An R., Luo Y., Liu M. Z., Chen W. F. Meta-analysis of the effect of somatic interactive games on the intervention of PLWD. Nursing Practice and Research, 2020;19(7), 989–994.

Wu Y. J., Liu H. J., Sun D. M., Dong H. T. The value of sensory stimulation combined with somatosensory interactive games in the care of PLWD. International Medicine and Health Guidance News. 2021;27(14), 2189–2192.

Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2017;78:34-43. doi:10.1016/j.neubiorev.2017.04.011

Li J, Guo Y, Yang K, et al. Rehabilitation effects of game therapy in people living with dementia: A systematic review and meta-analysis: Three formats of game therapy for Alzheimer's patients. Worldviews Evid Based Nurs. 2023;20(4):361-376. doi:10.1111/wvn.12648

Qian J, McDonough DJ, Gao Z. The Effectiveness of Virtual Reality Exercise on Individual's Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review. Int J Environ Res Public Health. 2020;17(11):4133. doi:10.3390/ijerph17114133

Miltiades HB, Thatcher WG. Social engagement during game play in persons with Alzheimer's: Innovative practice. Dementia (London). 2019;18(2):808-813. doi:10.1177/1471301216687920

Chen L. L., Li H., Jin S., Chen X. H., Chen Q. H., Li N. Analysis of abnormal eating behavior characteristics and potential needs of PLWD. Chinese Journal of Nursing. 2017;52(11), 1304–1309.

Shao T. F., Chen P., Chen Q. H., Lin S., Zhang H. A study on the effect of tabletop group games on emotion management of PLWD. Chinese General Practice Nursing, 2017;15(12), 1499–1501.

Opublikowane

7 lipca 2024