Zastosowanie komórek macierzystych w leczeniu wybranych uszkodzeń rogówki

Autorzy

Ola Wybraniec - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Wiktoria Wójcik - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Damian Zieliński - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Kamila Tokarczyk - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Maria Żak - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

rogówka, zespół niedoboru komórek macierzystych rąbka rogówki, dystrofia śródbłonkowa Fuchsa, komórki macierzyste, Holoclar®

Streszczenie

Rogówka to najbardziej zewnętrzny element układu optycznego oka o największej sile załamywania światła. Jakiekolwiek wady w jej budowie mogą skutkować zmętnieniem, zaburzonym widzeniem, a nawet ślepotą. Celem pracy jest przedstawienie dwóch wybranych schorzeń rogówki, tj. niewydolności komórek macierzystych rąbka - LSCD i dystrofii Fuchsa, wraz z przeglądem metod leczenia z perspektywami wykorzystania komórek macierzystych. Aby zapewnić prawidłową i cykliczną regenerację rogówki, niezbędna jest obecność komórek macierzystych rąbka rogówki - LESC, których utrata doprowadza do rozwoju LSCD. Możliwości terapii farmakologicznej LSCD są ograniczone, a dotychczasowe metody zabiegowe mają kilka istotnych wad. Dzięki namnażaniu LESC ex vivo, innowacyjny i skuteczny preparat Holoclar® nie stwarza ryzyka wywołania LSCD w zdrowym oku pacjenta oraz nie wiąże się ze skomplikowaną procedurą. Dystrofia Fuchsa to schorzenie charakteryzujące się zniszczeniem komórek śródbłonka, a w konsekwencji zmętnieniem rogówki, zaburzeniami unerwienia i obustronnym obrzękiem zrębu lub warstw nabłonka. Jest najczęstszym wskazaniem do keratoplastyki. Jednak z powodu pogłębiającego się niedoboru dawców, obecnie poszukuje się nowych metod terapii z wykorzystaniem komórek macierzystych, co owocuje obiecującymi badaniami na modelach zwierzęcych. Prawidłowe widzenie jest niezwykle ważne dla właściwego funkcjonowania i percepcji otaczającego świata, stąd w niniejszym rozdziale przedstawiono dotychczasowe osiągnięcia medycyny regeneracyjnej oka z podkreśleniem potrzeby jej dalszego rozwoju.

Bibliografia

Mohan RR, Kempuraj D, D'Souza S, Ghosh A. Corneal stromal repair and regeneration. Prog Retin Eye Res. 2022 Nov;91:101090. doi: 10.1016/j.preteyeres.2022.101090. Epub 2022 May 29. PMID: 35649962.

Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016 Feb;134(2):167-73. doi: 10.1001/jamaophthalmol.2015.4776. PMID: 26633035.

Tidke SC, Tidake P. A Review of Corneal Blindness: Causes and Management. Cureus. 2022 Oct 9;14(10):e30097. doi: 10.7759/cureus.30097. PMID: 36381769; PMCID: PMC9643016.

World Report on Vision, World Health Organization (WHO), 2021

Willmann D, Fu L, Melanson SW. Corneal Injury. 2023 Jul 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 29083785.

Dang DH, Riaz KM, Karamichos D. Treatment of Non-Infectious Corneal Injury: Review of Diagnostic Agents, Therapeutic Medications, and Future Targets. Drugs. 2022 Feb;82(2):145-167. doi: 10.1007/s40265-021-01660-5. Epub 2022 Jan 13. PMID: 35025078; PMCID: PMC8843898.

Tomczak W, Winkler-Lach W, Tomczyk-Socha M, Misiuk-Hojło M. Advancements in Ocular Regenerative Therapies. Biology (Basel). 2023 May 19;12(5):737. doi: 10.3390/biology12050737. PMID: 37237549; PMCID: PMC10215726.

Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018 Feb;66(2):190-194. doi: 10.4103/ijo.IJO_646_17. PMID: 29380756; PMCID: PMC5819093.

Fares U, Otri AM, Al-Aqaba MA, Dua HS. Correlation of central and peripheral corneal thickness in healthy corneas Cont Lens Anterior Eye. 2012;35:39–45

Oie Y, Komoto S, Kawasaki R. Systematic review of clinical research on regenerative medicine for the cornea. Jpn J Ophthalmol. 2021 Mar;65(2):169-183. doi: 10.1007/s10384-021-00821-z. Epub 2021 Feb 16. PMID: 33591470.

Tuft SJ, Coster DJ. The corneal endothelium. Eye (Lond). 1990;4 ( Pt 3):389-424. doi: 10.1038/eye.1990.53. PMID: 2209904.

Rio-Cristobal A, Martin R. Corneal assessment technologies: Current status Surv Ophthalmol. 2014;59:599–614

Nicula C, Szabo I, Ivan O. Stem cells treatment in the ocular surface regeneration. Rom J Ophthalmol. 2017 Oct-Dec;61(4):239-243. PMID: 29516041; PMCID: PMC5827138.

Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the Cornea: Structure, Function, and Development. Prog Mol Biol Transl Sci. 2015;134:7-23. doi: 10.1016/bs.pmbts.2015.04.001. Epub 2015 Jun 4. PMID: 26310146.

Bremond-Gignac D, Copin H, Benkhalifa M. Corneal epithelial stem cells for corneal injury. Expert Opin Biol Ther. 2018 Sep;18(9):997-1003. doi: 10.1080/14712598.2018.1508443. Epub 2018 Aug 9. PMID: 30092649.

Oie Y, Nishida K. Regenerative medicine for the cornea. Biomed Res Int. 2013;2013:428247. doi: 10.1155/2013/428247. Epub 2013 Dec 17. PMID: 24396826; PMCID: PMC3876767.

Corneal Disease, Cleveland Clinic, 17.01.2024., online: https://my.clevelandclinic.org/health/diseases/8586-corneal-disease, dostęp:18.03.2024

Singh P, Gupta A, Tripathy K. Keratitis. 2023 Aug 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 32644440.

Bulirsch LM, Löffler KU, Holz FG, Herwig-Carl MC. Histopathological Changes in Corneal Ectasia. Klin Monbl Augenheilkd. 2023 Jun;240(6):803-809. English, German. doi: 10.1055/a-2040-8283. Epub 2023 Feb 22. PMID: 36812937.

Eghrari AO, Riazuddin SA, Gottsch JD. Fuchs Corneal Dystrophy. Prog Mol Biol Transl Sci. 2015;134:79-97. doi: 10.1016/bs.pmbts.2015.04.005. Epub 2015 Jul 15. PMID: 26310151.

Barrientez B, Nicholas SE, Whelchel A, Sharif R, Hjortdal J, Karamichos D. Corneal injury: Clinical and molecular aspects. Exp Eye Res. 2019 Sep;186:107709. doi: 10.1016/j.exer.2019.107709. Epub 2019 Jun 22. PMID: 31238077; PMCID: PMC6703935.

Behr B, Ko SH, Wong VW, Gurtner GC, Longaker MT. Stem cells. Plast Reconstr Surg. 2010 Oct;126(4):1163-1171. doi: 10.1097/PRS.0b013e3181ea42bb. PMID: 20555302.

Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res. 2022 Mar;87:101011. doi: 10.1016/j.preteyeres.2021.101011. Epub 2021 Sep 14. PMID: 34530154; PMCID: PMC8918435.

Renata S. Produkty lecznicze zaawansowanej terapii medycznej oparte na mezenchymalnych komórkach macierzystych [Advanced medicinal products medical therapy based on mesenchymal stem cells]. Farm Pol. 2018;74(3):178-183. Polish. PMID: 29674780; PMCID: PMC5903288.

Haagdorens M, Van Acker SI, Van Gerwen V, Ní Dhubhghaill S, Koppen C, Tassignon MJ, Zakaria N. Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies. Stem Cells Int. 2016;2016:9798374, 22 pages, 2016. doi: 10.1155/2016/9798374.

Zhu J, Slevin M, Guo BQ, Zhu SR. Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol. 2018 Dec 18;11(12):2004-2010. doi: 10.18240/ijo.2018.12.21. PMID: 30588437; PMCID: PMC6288540

Sikora B, Skubis A, Sedlak L, et al. Limbal epithelial stem cells in regeneration of corneal epithelium – clinical and molecular aspects. Annales Academiae Medicae Silesiensis. 2018;72:108-115. doi:10.18794/aams/76254.

Ruan Y, Jiang S, Musayeva A, Pfeiffer N, Gericke A. Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells. 2021 Sep 3;10(9):2302. doi: 10.3390/cells10092302.

Zhao, M.; Zhang, H.; Zhen, D.; Huang, M.; Li, W.; Li, Z.; Liu, Y.; Xie, Y.; Zeng, B.; Wang, Z.; et al. Corneal Recovery Following Rabbit Peripheral Blood Mononuclear Cell–Amniotic Membrane Transplantation with Antivascular Endothelial Growth Factor in Limbal Stem Cell Deficiency Rabbits. Tissue Eng. Part C Methods 2020, 26, 541–552

Shanbhag S.S., Chanda S., Donthineni P.R., Basu S. Surgical Management of Unilateral Partial Limbal Stem Cell Deficiency: Conjunctival Autografts versus Simple Limbal Epithelial Transplantation. Clin. Ophthalmol. 2021;15:4389–4397. doi: 10.2147/OPTH.S338894

Vazirani J., Nair D., Shanbhag S., Wurity S., Ranjan A., Sangwan V. Limbal Stem Cell Deficiency-Demography and Underlying Causes. Am. J. Ophthalmol. 2018;188:99–103. doi: 10.1016/j.ajo.2018.01.020.

Deng SX, Borderie V, Chan CC, et al. Global Consensus on Definition, Classification, Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea. 2019 Mar;38(3):364-375. DOI: 10.1097/ico.0000000000001820. PMID: 30614902; PMCID: PMC6363877.

Sejpal K., Bakhtiari P., Deng S.X. Presentation, diagnosis and management of limbal stem cell deficiency. Middle East Afr. J. Ophthalmol. 2013 20(1): 5–10, doi: 10.4103/0974-9233.106381.

Fernandes, Merle MS; Sangwan, Virender S MS; Rao, Srinivas K FRCS; Basti, Surendra MD; Sridhar, Mittanamalli S MD; Bansal, Aashish K MS; Dua, Harminder S MD. Limbal Stem Cell Transplantation. Indian Journal of Ophthalmology 52(1):p 5-22, Jan–Mar 2004.

Schornack M. M. Limbal stem cell disease: management with scleral lenses. Clinical and Experimental Optometry. 2011;94(6):592–594. doi: 10.1111/j.1444-0938.2011.00618.

Dua HS. The conjunctiva in corneal epithelial wound healing. Br J Ophthalmol. 1998 Dec; 82(12):1407-11. doi: 10.1136/bjo.82.12.1407. PMID: 9930272; PMCID: PMC1722446.

Rauz S., Saw V. P. Serum eye drops, amniotic membrane and limbal epithelial stem cells—tools in the treatment of ocular surface disease. Cell and Tissue Banking. 2010;11(1):13–27. doi: 10.1007/s10561-009-9128-1.

Anderson D. F., Ellies P., Pires R. T. F., Tseng S. C. G. Amniotic membrane transplantation for partial limbal stem cell deficiency. British Journal of Ophthalmology. 2001;85(5):567–575. doi: 10.1136/bjo.85.5.567.

Kim J.C., Tseng S.C.G.: The Effects on Inhibition of Corneal Neovascularization After Human Amniotic Membrane Transplantation in Severely Damaged Rabbit Corneas. Korean J. Ophtalmol. 1995, Vol. 9:32-46.

Tseng S.C.G. et al.: Amniotic Membrane Transplantation With or Without Limbal Allografts for Corneal Surface Reconstruction in Patients With Limbal Stem Cell Deficiency. Arch. Ophtalmol. 1998, Vol 116:431-441.

Sangwan VS. Limbal stem cells in health and disease. Biosci Rep. 2001 Aug;21(4):385-405. doi: 10.1023/a:1017935624867.

Daya, Sheraz M.. Conjunctival–limbal autograft. Current Opinion in Ophthalmology 28(4):p 370-376, July 2017. | DOI: 10.1097/ICU.0000000000000385

NICE (2017a). National Institute For Health And Care Excellence Single Technology Appraisal Holoclar for Treating Limbal Stem Cell Deficiency After Eye Burns [ID899], Holoclar for treating limbal stem cell deficiency after eye burns. Dostęp online: https://www.nice.org.uk/guidance/ta467/documents/committee-papers-2 (accessed 26/03/2024).

Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S. 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J. Cell Biochem. 2011;112(4): 993-1002. doi: 10.1002/jcb.23028.

Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R, James SE. Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 2005; 112(3): 470–7.

Henderson TR, Coster DJ, Williams KA. The long term outcome of limbal allografts: the search for surviving cells. Br. J. Ophthalmol. 2001; 85(5): 604–9.

Cheung, Albert Y.a,b; Holland, Edward J.a,b. Keratolimbal allograft. Current Opinion in Ophthalmology 28(4):p 377-381, July 2017. | DOI: 10.1097/ICU.0000000000000374

Rama P, Ferrari G, Pellegrini G. Cultivated limbal epithelial transplantation. Curr Opin Ophthalmol. 2017 Jul;28(4):387-389. doi: 10.1097/ICU.0000000000000382.

Shortt A. J., Secker G. A., Notara M. D., et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Survey of Ophthalmology. 2007;52(5):483–502. doi: 10.1016/j.survophthal.2007.06.013.

Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012 Jul;96(7):931-4. doi: 10.1136/bjophthalmol-2011-301164.

Sangwan VS, Sharp JAH. Simple limbal epithelial transplantation. Curr Opin Ophthalmol. 2017 Jul;28(4):382-386. doi: 10.1097/ICU.0000000000000377.

Vazirani J., Ali M.H., Sharma N. Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: multicentre results. Br J Ophthalmol. 2016;100(10):1416–1420. doi: 10.1136/bjophthalmol-2015-307348.

Sareen D., Saghizadeh M., Ornelas L., Winkler M.A., Narwani K., Sahabian A., Funari V.A., Tang J., Spurka L., Punj V., Maguen E., Rabinowitz Y.S., Svendsen C.N., Ljubimov A.V. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl. Med. 2014; 3(9): 1002–1012, doi: 10.5966/sctm.2014-0076.

López-Paniagua M., Nieto-Miguel T., de la Mata A., Dziasko M., Galindo S., Rey E., Herreras J.M., Corrales R.M., Daniels J.T., Calonge M. Comparison of functional limbal epithelial stem cell isolation methods. Exp. Eye Res. 2016; 146: 83–94, doi: 10.1016/j.exer.2015.12.002

Pellegrini G, Ardigò D, Milazzo G, Iotti G, Guatelli P, Pelosi D, De Luca M. Navigating Market Authorization: The Path Holoclar Took to Become the First Stem Cell Product Approved in the European Union. Stem Cells Transl Med. 2018 Jan;7(1):146-154. doi: 10.1002/sctm.17-0003.

Nicole Arrighi, 3 - Stem Cells at the Core of Cell Therapy, Editor(s): Nicole Arrighi, Stem Cells, Elsevier, 2018, Pages 73-100, ISBN 9781785482540. doi:10.1016/B978-1-78548-254-0.50003-3

Aneks 1, Charakterystyka Produktu Leczniczego Holoclar®, online: https://ec.europa.eu/health/documents/community-register/2015/20150217130830/anx_130830_pl.pdf, dostęp:26.03.2024

Milazzo G, De Luca M, Pellegrini G. (2016). Holoclar: first of its kind in more ways than one. Cell and Gene Therapy Insights. 2. 183-197. doi: 10.18609/cgti.2016.023.

Dobrowolski D, Wowra B, Wróblewska-Czajka E, Krysik K, Grolik M, Wylęgała E. Ewolucja czy rewolucja w terapii nabytej niewydolności rąbka rogówki: Holoclar® – nowy lek zawierający komórki macierzyste nabłonka rogówki. OphthaTherapy. 2018;5(3):137-141. doi: 10.24292/01.OT.300918.1

Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010 Jul 8;363(2):147-55. doi: 10.1056/NEJMoa0905955.

Zhu J, Slevin M, Guo BQ, Zhu SR. Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol. 2018 Dec 18;11(12):2004-2010. doi: 10.18240/ijo.2018.12.21.

Cieślar-Pobuda A, Rafat M, Knoflach V, Skonieczna M, Hudecki A, Małecki A, Urasińska E, Ghavami S, Łos MJ. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. 2016 Jul 5;7(27):42314-42329. doi: 10.18632/oncotarget.9791.

Hayashi R, Ishikawa Y, Sasamoto Y, Katori R, Nomura N, Ichikawa T, Araki S, Soma T, Kawasaki S, Sekiguchi K, Quantock AJ, Tsujikawa M, Nishida K. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature. 2016 Mar 17;531(7594):376-80. doi: 10.1038/nature17000.

Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N, Kamao H, Mandai M, Morinaga C, Takahashi M, Kawamata S. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One. 2014 Jan 14;9(1):e85336. doi: 10.1371/journal.pone.0085336.

Elhalis H, Azizi B, Jurkunas UV. Fuchs endothelial corneal dystrophy. Ocul Surf. 2010 Oct;8(4):173-84. doi: 10.1016/s1542-0124(12)70232-x.

Moshirfar M, Somani AN, Vaidyanathan U, Patel BC. Fuchs Endothelial Dystrophy. 2023 Jul 31. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. Dostęp online accessed 26.03.2024 : https://www.ncbi.nlm.nih.gov/books/NBK545248/

Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res. 2021 Jan;80:100863. doi: 10.1016/j.preteyeres.2020.100863.

Micinska A, Nowinska A, Sendecki A, Wylegala E. (2020). Dystrofia śródbłonkowa Fuchsa – aktualne poglądy na patofizjologię i leczenie choroby. OphthaTherapy. 7. 213-224. doi: 10.24292/01.OT.300920.3.

Xia D, Zhang S, Nielsen E, Ivarsen AR, Liang C, Li Q, Thomsen K, Hjortdal JØ, Dong M. The Ultrastructures and Mechanical Properties of the Descement's Membrane in Fuchs Endothelial Corneal Dystrophy. Sci Rep. 2016 Mar 16;6:23096. doi: 10.1038/srep23096.

Jurkunas UV. Fuchs Endothelial Corneal Dystrophy Through the Prism of Oxidative Stress. Cornea. 2018 Nov;37 Suppl 1:S50-S54. doi: 10.1097/ICO.0000000000001775.

Schmedt T, Silva MM, Ziaei A, Jurkunas U. Molecular bases of corneal endothelial dystrophies. Exp Eye Res. 2012 Feb;95(1):24-34. doi: 10.1016/j.exer.2011.08.002.

Azizi B, Ziaei A, Fuchsluger T, Schmedt T, Chen Y, Jurkunas UV. p53-regulated increase in oxidative-stress--induced apoptosis in Fuchs endothelial corneal dystrophy: a native tissue model. Invest Ophthalmol Vis Sci. 2011 Dec 2;52(13):9291-7. doi: 10.1167/iovs.11-8312.

Sarnicola C, Farooq AV, Colby K. Fuchs Endothelial Corneal Dystrophy: Update on Pathogenesis and Future Directions. Eye Contact Lens. 2019 Jan;45(1):1-10. doi: 10.1097/ICL.0000000000000469.

Zhang X, Igo RP Jr, Fondran J, Mootha VV, Oliva M, Hammersmith K, Sugar A, Lass JH, Iyengar SK; Fuchs' Genetics Multi-Center Study Group. Association of smoking and other risk factors with Fuchs' endothelial corneal dystrophy severity and corneal thickness. Invest Ophthalmol Vis Sci. 2013 Aug 27;54(8):5829-35. doi: 10.1167/iovs.13-11918.

Eghrari AO, Daoud YJ, Gottsch JD. Cataract surgery in Fuchs corneal dystrophy. Curr Opin Ophthalmol. 2010 Jan;21(1):15-9. doi: 10.1097/ICU.0b013e328333e9d6.

Zhou Y, Wang T, Tuli SS, Steigleman WA, Shah AA. Overview of Corneal Transplantation for the Nonophthalmologist. Transplant Direct. 2023 Jan 12;9(2):e1434. doi: 10.1097/TXD.0000000000001434. PMID: 36700069; PMCID: PMC9835895.

Singh R, Gupta N, Vanathi M, Tandon R. Corneal transplantation in the modern era. Indian J Med Res. 2019 Jul;150(1):7-22. doi: 10.4103/ijmr.IJMR_141_19. PMID: 31571625; PMCID: PMC6798607.

Griffith M, Alarcon EI, Brunette I. Regenerative approaches for the cornea. J Intern Med. 2016 Sep;280(3):276-86. doi: 10.1111/joim.12502. Epub 2016 Apr 20. PMID: 27098482.

Chua A, Chua MJ, Kam P. Recent advances and anaesthetic considerations in corneal transplantation. Anaesth Intensive Care. 2018 Mar;46(2):162-170. doi: 10.1177/0310057X1804600204. PMID: 29519218.

Anshu A, Li L, Htoon HM, de Benito-Llopis L, Shuang LS, Singh MJ, et al.. Long-term review of penetrating keratoplasty: a 20-year review in asian eyes. Am J Ophthalmol. (2020) 224:254–66. 10.1016/j.ajo.2020.10.014

Ahmad S, Mathews PM, Lindsley K, Alkharashi M, Hwang FS, Ng SM, et al.. Boston type 1 keratoprosthesis versus repeat donor keratoplasty for corneal graft failure: a systematic review and meta-analysis. Ophthalmology. (2016) 123:165–77. 10.1016/j.ophtha.2015.09.028

Fu L, Hollick EJ. Long-term Outcomes of Descemet Stripping Endothelial Keratoplasty: Ten-Year Graft Survival and Endothelial Cell Loss. Am J Ophthalmol. 2022 Feb;234:215-222. doi: 10.1016/j.ajo.2021.08.005. Epub 2021 Aug 17. PMID: 34416181

Organ and Tissue Donation and Transplantation Activity Report 2022/23, NHS Blood and Transplant, 15.11.2023., online: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/30188/activity-report-2022-2023-final.pdf, dostęp: 18.03.2024

Gain P, Jullienne R, He Z, et al. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016;134(2):167–173. doi:10.1001/jamaophthalmol.2015.4776

Macsai MS, Shiloach M. Use of Topical Rho Kinase Inhibitors in the Treatment of Fuchs Dystrophy After Descemet Stripping Only. Cornea. 2019 May;38(5):529-534. doi: 10.1097/ICO.0000000000001883.

Price MO, Mehta JS, Jurkunas UV, Price FW Jr. Corneal endothelial dysfunction: Evolving understanding and treatment options. Prog Retin Eye Res. 2021 May;82:100904. doi: 10.1016/j.preteyeres.2020.100904.

Zhao JJ, Afshari NA. Generation of Human Corneal Endothelial Cells via In Vitro Ocular Lineage Restriction of Pluripotent Stem Cells. Invest Ophthalmol Vis Sci. 2016 Dec 1;57(15):6878-6884. doi: 10.1167/iovs.16-20024.

Faye PA, Poumeaud F, Chazelas P, Duchesne M, Rassat M, Miressi F, Lia AS, Sturtz F, Robert PY, Favreau F, Benayoun Y. Focus on cell therapy to treat corneal endothelial diseases. Exp Eye Res. 2021 Mar;204:108462. doi: 10.1016/j.exer.2021.108462.

Ng XY, Peh GSL, Yam GH, Tay HG, Mehta JS. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int J Mol Sci. 2023 Aug 4;24(15):12433. doi: 10.3390/ijms241512433.

Lovatt M, Yam GH, Peh GS, Colman A, Dunn NR, Mehta JS. Directed differentiation of periocular mesenchyme from human embryonic stem cells. Differentiation. 2018 Jan-Feb;99:62-69. doi: 10.1016/j.diff.2017.11.003.

Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond). 2013 May;27(5):579-88. doi: 10.1038/eye.2013.

Ghiasi, Mohsen & Jadidi, Khosrow & Hashemi, Mehrdad & Hamed, Zare & Salimi, Ali & Aghamollaei, Hossein. (2021). Application of Mesenchymal Stem Cells in corneal regeneration. Tissue and Cell. 73. 101600. doi: 10.1016/j.tice.2021.101600.

Mittal SK, Omoto M, Amouzegar A, Sahu A, Rezazadeh A, Katikireddy KR, Shah DI, Sahu SK, Chauhan SK. Restoration of Corneal Transparency by Mesenchymal Stem Cells. Stem Cell Reports. 2016 Oct 11;7(4):583-590. doi: 10.1016/j.stemcr.2016.09.001.

Liu H, Zhang J, Liu CY, Wang IJ, Sieber M, Chang J, Jester JV, Kao WW. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One. 2010 May 19;5(5):e10707. doi: 10.1371/journal.pone.0010707.

Du Y, Roh DS, Funderburgh ML, Mann MM, Marra KG, Rubin JP, Li X, Funderburgh JL. Adipose-derived stem cells differentiate to keratocytes in vitro. Mol Vis. 2010 Dec 10;16:2680-9. PMID: 21179234; PMCID: PMC3002955.

Shao C, Fu Y, Lu W, Fan X. Bone marrow-derived endothelial progenitor cells: a promising therapeutic alternative for corneal endothelial dysfunction. Cells Tissues Organs. 2011;193(4):253-63. doi: 10.1159/000319797.

Opublikowane

7 lipca 2024