Etyka wykorzystania sztucznej inteligencji w opiece zdrowotnej

Autorzy

Karolina Zięba - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Jakub Kmieć - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Zuzanna Złotnicka - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Jakub Kufel - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Paweł Krupa - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Sebastian Kościjański - Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

sztuczna inteligencja

Streszczenie

Ingerencja sztucznej inteligencji (AI) rewolucjonizuje obszar opieki zdrowotnej, zwiastując nową erę innowacji medycznych, których celem jest usprawnienie procesów diagnostycznych i lepsza opieka nad pacjentami. Niemniej jednak, równolegle z jej rozwojem, uwidocznieniu ulega szereg implikacji etycznych związanych z prywatnością, uczciwością, bezpieczeństwem, przejrzystością i odpowiedzialnością za narzędzia AI, proces ich wdrażania i zastosowania. Jedynym sposobem na wykorzystanie potencjału, jaki niosą ze sobą narzędzi AI, jest stosowanie podstawowych zasad etyki oraz poszanowanie praw pacjenta. Celem poniższego rozdziału jest przybliżenie kwestii etycznych wykorzystania AI, istniejących ram prawnych dotyczących jej stosowania oraz ukazanie obawy, które trapią głównych potencjalnych beneficjentów procesu - pacjentów.

Bibliografia

Saheb T, Saheb T, Carpenter DO. Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis. Computers in Biology and Medicine. 2021;135:104660. doi:10.1016/j.compbiomed.2021.104660

Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31-38. doi:10.1038/s41591-021-01614-0

Airenti G. The Cognitive Bases of Anthropomorphism: From Relatedness to Empathy. Int J of Soc Robotics. 2015;7(1):117-127. doi:10.1007/s12369-014-0263-x)

Epley N, Waytz A, Cacioppo JT. On seeing human: A three-factor theory of anthropomorphism. Psychological Review. 2007;114(4):864-886. doi:10.1037/0033-295x.114.4.864

Epley N, Waytz A, Akalis S, Cacioppo JT. When We Need A Human: Motivational Determinants of Anthropomorphism. Social Cognition. 2008;26(2):143-155. doi:10.1521/soco.2008.26.2.143

Epley N. A Mind like Mine: The Exceptionally Ordinary Underpinnings of Anthropomorphism. Journal of the Association for Consumer Research. 2018;3(4):591-598. doi:10.1086/699516

Bartneck C. Robots In The Theatre And The Media. Unpublished. Published online 2013. doi:10.13140/RG.2.2.28798.79682

Hartzog, W. Unfair and deceptive robots. Maryland Law Review. 2015. 785: 74

Kaminski, M., M. Rueben, C. Grimm, and W. D. Smart. 2017. Averting robot eyes. Maryland Law Review 76:983

Lyons JB, Hobbs K, Rogers S, Clouse SH. Responsible (use of) AI. Front Neuroergonomics. 2023;4. doi:10.3389/fnrgo.2023.1201777

Fernández-Alemán JL, Señor IC, Lozoya PÁO, Toval A. Security and privacy in electronic health records: A systematic literature review. Journal of Biomedical Informatics. 2013;46(3):541-562. doi:10.1016/j.jbi.2012.12.003

Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453. doi:10.1126/science.aax2342

Mittelstadt BD, Allo P, Taddeo M, Wachter S, Floridi L. The ethics of algorithms: Mapping the debate. Big Data & Society. 2016;3(2):205395171667967. doi:10.1177/2053951716679679

Calo R, Froomkin AM, Kerr I. Artificial intelligence policy: a primer and roadmap. SSRN Electron J. 2017;51:399

Darby A, Strum MW, Holmes E, Gatwood J. A Review of Nutritional Tracking Mobile Applications for Diabetes Patient Use. Diabetes Technology & Therapeutics. 2016;18(3):200-212. doi:10.1089/dia.2015.0299

Price WN II, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43. doi:10.1038/s41591-018-0272-7

Suresh H, Guttag JV. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. arXiv. Published online 2019. doi:10.48550/ARXIV.1901.10002

Calders T, Verwer S. Three naive Bayes approaches for discrimination-free classification. Data Min Knowl Disc. 2010;21(2):277-292. doi:10.1007/s10618-010-0190-x

Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R. Fairness Through Awareness. Published online 2011. doi:10.48550/ARXIV.1104.3913

Sabry F, Eltaras T, Labda W, Alzoubi K, Malluhi Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. Wu Y, ed. Journal of Healthcare Engineering. 2022;2022:1-25. doi:10.1155/2022/4653923

European Data Protection Board. Guidelines 3/2019 on processing of personal data through video devices. 2019

Khoury MJ, Bowen S, Dotson WD, et al. Health equity in the implementation of genomics and precision medicine: A public health imperative. Genetics in Medicine. 2022;24(8):1630-1639. doi:10.1016/j.gim.2022.04.009

Istasy P, Lee WS, Iansavichene A, et al. The Impact of Artificial Intelligence on Health Equity in Oncology: Scoping Review. J Med Internet Res. 2022;24(11):e39748. doi:10.2196/39748

Corbett-Davies S, Gaebler JD, Nilforoshan H, Shroff R, Goel S. The Measure and Mismeasure of Fairness. arXiv. Published online 2018. doi:10.48550/ARXIV.1808.00023

Buolamwini J, Gebru T. Gender shades: Intersectional accuracy disparities in commercial gender classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency. 2018:77–91

Wachter S, Mittelstadt B, Floridi L. Transparent, explainable, and accountable AI for robotics. Sci Robot. 2017;2(6). doi:10.1126/scirobotics.aan6080

Coeckelbergh M. Artificial Intelligence, Responsibility Attribution, and a Relational Justification of Explainability. Sci Eng Ethics. 2019;26(4):2051-2068. doi:10.1007/s11948-019-00146-8

Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. Intelligible Models for HealthCare. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Published online August 10, 2015. doi:10.1145/2783258.2788613

Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Published online August 13, 2016. doi:10.1145/2939672.2939778

Obasa AE, Palk AC. Responsible application of artificial intelligence in health care. S Afr J Sci. 2023;119(5/6). doi:10.17159/sajs.2023/14889

Hagos DH, Rawat DB. Recent Advances in Artificial Intelligence and Tactical Autonomy: Current Status, Challenges, and Perspectives. Sensors. 2022;22(24):9916. doi:10.3390/s22249916

Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1).

Fehr J, Jaramillo-Gutierrez G, Oala L, et al. Piloting a Survey-Based Assessment of Transparency and Trustworthiness with Three Medical AI Tools. Healthcare. 2022;10(10):1923. doi:10.3390/healthcare10101923 doi:10.1186/s12911-020-01332-6

Bjerring JC, Busch J. Artificial Intelligence and Patient-Centered Decision-Making. Philos Technol. 2020;34(2):349-371. doi:10.1007/s13347-019-00391-6

Chaddad A, Peng J, Xu J, Bouridane A. Survey of Explainable AI Techniques in Healthcare. Sensors. 2023;23(2):634. doi:10.3390/s23020634

Politi MC, Dizon DS, Frosch DL, Kuzemchak MD, Stiggelbout AM. Importance of clarifying patients’ desired role in shared decision making to match their level of engagement with their preferences. BMJ. 2013;347(dec02 1):f7066-f7066. doi:10.1136/bmj.f7066

Stacey D, Légaré F, Lewis K, et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database of Systematic Reviews. 2017;2017(4). doi:10.1002/14651858.cd001431.pub5

Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1). doi:10.1186/s12911-020-01332-6

Elwyn G, Frosch D, Thomson R, et al. Shared Decision Making: A Model for Clinical Practice. J GEN INTERN MED. 2012;27(10):1361-1367. doi:10.1007/s11606-012-2077-6

Sinsky C, Colligan L, Li L, et al. Allocation of Physician Time in Ambulatory Practice: A Time and Motion Study in 4 Specialties. Ann Intern Med. 2016;165(11):753. doi:10.7326/m16-0961

Emanuel EJ, Wachter RM. Artificial Intelligence in Health Care. JAMA. 2019;321(23):2281. doi:10.1001/jama.2019.4914

Ayala Solares JR, Diletta Raimondi FE, Zhu Y, et al. Deep learning for electronic health records: A comparative review of multiple deep neural architectures. Journal of Biomedical Informatics. 2020;101:103337. doi:10.1016/j.jbi.2019.103337

World Medical Association Declaration of Helsinki. JAMA. 2013;310(20):2191. doi:10.1001/jama.2013.281053

van Kolfschooten H, Shachar C. The Council of Europe’s AI Convention (2023–2024): Promises and pitfalls for health protection. Health Policy. 2023;138:104935. doi:10.1016/j.healthpol.2023.104935

World Health Organisation. Digital health. 2019

Summary of recommendations regarding COVID ‐19 in children with diabetes: Keep Calm and Mind your Diabetes Care and Public Health Advice. Pediatr Diabetes. 2020;21(3):413-414. doi:10.1111/pedi.13013

Food and Drug Administration. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD). 2019

Naik N, Hameed BMZ, Shetty DK, et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front Surg. 2022;9. doi:10.3389/fsurg.2022.862322

Brady AP, Neri E. Artificial Intelligence in Radiology—Ethical Considerations. Diagnostics. 2020;10(4):231. doi:10.3390/diagnostics10040231

IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems. Ethically aligned design: a vision for prioritizing human well-being with autonomous and intelligent systems. 2019

Nagai H, Nakazawa E, Akabayashi A. The creation of the Belmont Report and its effect on ethical principles: a historical study. Monash Bioeth Rev. 2022;40(2):157-170. doi:10.1007/s40592-022-00165-5

Winfield AFT, Booth S, Dennis LA, et al. IEEE P7001: A Proposed Standard on Transparency. Front Robot AI. 2021;8. doi:10.3389/frobt.2021.665729

Ruger JP. Ethics of the social determinants of health. The Lancet. 2004;364(9439):1092-1097. doi:10.1016/s0140-6736(04)17067-0

Sivarajah U, Wang Y, Olya H, Mathew S. Responsible Artificial Intelligence (AI) for Digital Health and Medical Analytics. Inf Syst Front. 2023;25(6):2117-2122. doi:10.1007/s10796-023-10412-7

Esmaeilzadeh P, Mirzaei T, Dharanikota S. Patients’ Perceptions Toward Human–Artificial Intelligence Interaction in Health Care: Experimental Study. J Med Internet Res. 2021;23(11):e25856. doi:10.2196/25856

Xu J. Overtrust of Robots in High-Risk Scenarios. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. Published online December 27, 2018. doi:10.1145/3278721.3278786

Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. Journal of the American Medical Informatics Association. 2019;27(3):491-497. doi:10.1093/jamia/ocz192

Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018;15(11):e1002689. doi:10.1371/journal.pmed.1002689

https://www.nuffieldfoundation.org/sites/default/files/files/Ethical-and-Societal-Implications-of-Data-and-AI-report-Nuffield-Foundat.pdf

Lu L, Cai R, Gursoy D. Developing and validating a service robot integration willingness scale. International Journal of Hospitality Management. 2019;80:36-51. doi:10.1016/j.ijhm.2019.01.005

Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018;15(11):e1002689. doi:10.1371/journal.pmed.1002689

Gursoy D, Chi OH, Lu L, Nunkoo R. Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management. 2019;49:157-169. doi:10.1016/j.ijinfomgt.2019.03.008

Hair JF, Ringle CM, Sarstedt M. PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice. 2011;19(2):139-152. doi:10.2753/mtp1069-6679190202

Cath C. Governing artificial intelligence: ethical, legal and technical opportunities and challenges. Phil Trans R Soc A. 2018;376(2133):20180080. doi:10.1098/rsta.2018.0080

Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. Journal of the American Medical Informatics Association. 2019;27(3):491-497. doi:10.1093/jamia/ocz192

Beets B, Newman TP, Howell EL, Bao L, Yang S. Surveying Public Perceptions of Artificial Intelligence in Health Care in the United States: Systematic Review. J Med Internet Res. 2023;25:e40337. doi:10.2196/40337

https://www.monmouth.edu/polling-institute/reports/monmouthpoll_us_042015/

https://osf.io/k82d6/

https://www.icpsr.umich.edu/web/ICPSR/studies/34601/versions/V1

https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2022/03/PI_2022.03.17_ai-he-TOPLINE.pdf

Yap A, Wilkinson B, Chen E, et al. Patients Perceptions of Artificial Intelligence in Diabetic Eye Screening. Asia-Pacific Journal of Ophthalmology. 2022;11(3):287-293. doi:10.1097/apo.0000000000000525

Zapowiedzi

13 lipca 2024