Wpływ mikrobioty jelitowej i składników mineralnych na rozwój otyłości

Autorzy

Natalia Nafalska
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Małgorzata Stopyra
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Michał Przywuski
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Krzysztof Feret
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

mikrobiota jelitowa, otyłość, przeszczep mikroflory jelitowej, składniki mineralne, leczenie otyłości

Streszczenie

Otyłość, uznana przez Światową Organizację Zdrowia za chorobę, stanowi globalny problem zdrowotny, ze stale rosnącą liczbą chorych na całym świecie. Patogeneza otyłości jest złożona i obejmuje czynniki genetyczne, metaboliczne i środowiskowe. Mikroflora jelitowa oraz składniki mineralne wykazują istotny wpływ na metabolizm i funkcje organizmu, co może odgrywać rolę w rozwoju otyłości. Dostępne badania potwierdzają, że  mikroflora jelitowa moduluje metabolizm energetyczny gospodarza poprzez wpływ na wchłanianie składników odżywczych, produkcję krótkołańcuchowych kwasów tłuszczowych oraz regulację metabolizmu lipidów i glukozy. Dodatkowo, niedobory składników mineralnych, takich jak cynk czy witamina D, mogą być związane z zaburzeniami metabolicznymi sprzyjającymi rozwojowi otyłości. Intensyfikacja badań oraz zrozumienie roli mikroflory jelitowej i składników mineralnych, daje perspektywę odkrycia nowych lub zoptymalizowania obecnych strategii w leczeniu tej choroby. 

Rozdziały

  • Wpływ mikrobioty jelitowej i składników mineralnych na rozwój otyłości

Bibliografia

World Health Organisation. Obesity and Overweight. World Health Organisation. Published June 9, 2021. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Jastreboff AM, Kotz CM, Kahan S, Kelly AS, Heymsfield SB. Obesity as a Disease: The Obesity Society 2018 Position Statement. Obesity. 2018;27(1):7-9. doi:https://doi.org/10.1002/oby.22378

Marques A, Peralta M, Naia A, Loureiro N, de Matos MG. Prevalence of adult overweight and obesity in 20 European countries, 2014. European Journal of Public Health. 2017;28(2):295-300. doi:https://doi.org/10.1093/eurpub/ckx143

Stepaniak U, Micek A, Waśkiewicz A, et al. Prevalence of general and abdominal obesity and overweight among adults in Poland. Results of the WOBASZ II study (2013–2014) and comparison with the WOBASZ study (2003–2005). Polish Archives of Internal Medicine. Published online August 18, 2016. doi:https://doi.org/10.20452/pamw.3499

Obesity rate by body mass index (BMI) (sdg_02_10). ec.europa.eu. Accessed February 22, 2023. https://ec.europa.eu/eurostat/cache/metadata/en/sdg_02_10_esmsip2.htm

NEEL JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?. American journal of human genetics. 1962;14(4):353-362. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932342/

Hales CN, Barker DJ. The thrifty phenotype hypothesis. British medical bulletin. 2001;60(1):5-20. doi:https://doi.org/10.1093/bmb/60.1.5

Jéquier E. Pathways to obesity. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity. 2002;26 Suppl 2:S12-17. doi:https://doi.org/10.1038/sj.ijo.0802123

Di Angelantonio E, Bhupathiraju SN, Wormser D, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet. 2016;388(10046):776-786. doi:https://doi.org/10.1016/s0140-6736(16)30175-1

Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. Published online May 4, 2016:i2156. doi:https://doi.org/10.1136/bmj.i2156

Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetologica. 2011;48(4):257-273. doi:https://doi.org/10.1007/s00592-011-0333-6

Stappenbeck TS, Hooper LV, Gordon JI. Nonlinear partial differential equations and applications: Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences. 2002;99(24):15451-15455. doi:https://doi.org/10.1073/pnas.202604299

Cheng Z, Zhang L, Yang L, Chu H. The critical role of gut microbiota in obesity. Frontiers in Endocrinology. 2022;13. doi:https://doi.org/10.3389/fendo.2022.1025706

Xu J, Gordon JI. Honor thy symbionts. Proceedings of the National Academy of Sciences. 2003;100(18):10452-10459. doi:https://doi.org/10.1073/pnas.1734063100

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi:https://doi.org/10.1038/nature05414

Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American Journal of Clinical Nutrition. 2011;94(1):58-65. doi:https://doi.org/10.3945/ajcn.110.010132

1.Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Frontiers in Microbiology. 2020;11(219). doi:https://doi.org/10.3389/fmicb.2020.00219

‌18. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2015;65(3):426-436. doi:https://doi.org/10.1136/gutjnl-2014-308778

Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine. 2019;25(7):1096-1103. doi:https://doi.org/10.1038/s41591-019-0495-2

Fredrik Bäckhed, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences. 2007;104(3):979-984. doi:https://doi.org/10.1073/pnas.0605374104

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi:https://doi.org/10.1038/nature05414

Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe. 2008;3(4):213-223. doi:https://doi.org/10.1016/j.chom.2008.02.015

‌‌

Marlicz W, Ostrowska L, Łoniewski I. Intestinal microbiota and its potential relationship with obesity. Endocrinology, Obesity and Metabolic Disorders. 2013;9(1):20-28. Accessed February 22, 2023. https://journals.viamedica.pl/eoizpm/article/view/34276

Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointestinal Endoscopy. 2013;78(2):240-249. doi:https://doi.org/10.1016/j.gie.2013.03.1329

Haifer C, Kelly CR, Paramsothy S, et al. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut. 2020;69(5):801-810. doi:https://doi.org/10.1136/gutjnl-2019-320260

Lee P, Yacyshyn BR, Yacyshyn MB. Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes, Obesity and Metabolism. 2018;21(3):479-490. doi:https://doi.org/10.1111/dom.13561

Kellermayer R. Prospects and challenges for intestinal microbiome therapy in pediatric gastrointestinal disorders. World Journal of Gastrointestinal Pathophysiology. 2013;4(4):91. doi:https://doi.org/10.4291/wjgp.v4.i4.91

Baxter M, Ahmad T, Colville A, Sheridan R. Fatal Aspiration Pneumonia as a Complication of Fecal Microbiota Transplant. Clinical Infectious Diseases. 2015;61(1):136-137. doi:https://doi.org/10.1093/cid/civ247

DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. New England Journal of Medicine. Published online October 30, 2019. doi:https://doi.org/10.1056/nejmoa1910437

Hohmann EL, Ananthakrishnan AN, Deshpande V. Case 25-2014. Cabot RC, Rosenberg ES, Harris NL, et al., eds. New England Journal of Medicine. 2014;371(7):668-675. doi:https://doi.org/10.1056/nejmcpc1400842

Moayyedi P, Surette MG, Kim PT, et al. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015;149(1):102-109.e6. doi:https://doi.org/10.1053/j.gastro.2015.04.001

Sbahi H, Di Palma JA. Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterology. 2016;3(1):e000087. doi:https://doi.org/10.1136/bmjgast-2016-000087

Li M, Liang P, Li Z, et al. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Frontiers in Microbiology. 2015;6. doi:https://doi.org/10.3389/fmicb.2015.00692

Gagliardi A, Totino V, Cacciotti F, et al. Rebuilding the Gut Microbiota Ecosystem. International Journal of Environmental Research and Public Health. 2018;15(8):1679. doi:https://doi.org/10.3390/ijerph15081679

Skalny AV, Aschner M, Lei XG, et al. Gut Microbiota as a Mediator of Essential and Toxic Effects of Zinc in the Intestines and Other Tissues. International Journal of Molecular Sciences. 2021;22(23):13074. doi:https://doi.org/10.3390/ijms222313074

Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111-114. doi:https://doi.org/10.4161/bact.1.2.14590

Zhang H, Cai L. Zinc homeostasis plays an important role in the prevention of obesity-induced cardiac inflammation, remodeling and dysfunction. Journal of Trace Elements in Medicine and Biology. 2020;62:126615. doi:https://doi.org/10.1016/j.jtemb.2020.126615

Gomes C de C, Passos TS, Morais AHA. Vitamin A Status Improvement in Obesity: Findings and Perspectives Using Encapsulation Techniques. Nutrients. 2021;13(6):1921. doi:https://doi.org/10.3390/nu13061921

Kimmons JE, Blanck HM, Tohill BC, Zhang J, Khan LK. Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed: Medscape General Medicine. 2006;8(4):59. Accessed January 9, 2021. https://pubmed.ncbi.nlm.nih.gov/17415336/

García OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutrition Reviews. 2009;67(10):559-572. doi:https://doi.org/10.1111/j.1753-4887.2009.00228.x

Andersen LF, Jacobs DR, Gross MD, Schreiner PJ, Dale Williams O, Lee DH. Longitudinal associations between body mass index and serum carotenoids: the CARDIA study. British Journal of Nutrition. 2006;95(2):358-365. doi:https://doi.org/10.1079/bjn20051638

Coronel J, Pinos I, Amengual J. β-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients. 2019;11(4):842. doi:https://doi.org/10.3390/nu11040842

BARREA L, FRIAS-TORAL E, PUGLIESE G, et al. Vitamin D in obesity and obesity-related diseases: an overview. Minerva Endocrinology. 2021;46(2). doi:https://doi.org/10.23736/s2724-6507.20.03299-x

Knutsen KV, Brekke M, Gjelstad S, Lagerløv P. Vitamin D status in patients with musculoskeletal pain, fatigue and headache: A cross-sectional descriptive study in a multi-ethnic general practice in Norway. Scandinavian Journal of Primary Health Care. 2010;28(3):166-171. doi:https://doi.org/10.3109/02813432.2010.505407

Lim HH. Commentary on “Low serum 25-hydroxyvitamin D level is associated with obesity and atherogenesis in adolescent boys.” Annals of Pediatric Endocrinology & Metabolism. 2022;27(1):3-4. doi:https://doi.org/10.6065/apem.2221056edi01

Naganuma J, Koyama S, Arisaka O, Yoshihara S. Low serum 25-hydroxyvitamin D level is associated with obesity and atherogenesis in adolescent boys. Annals of Pediatric Endocrinology & Metabolism. 2022;27(1):30-36. doi:https://doi.org/10.6065/apem.2142112.056

Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. The American Journal of Clinical Nutrition. 2016;104(4):1151-1159. doi:https://doi.org/10.3945/ajcn.116.136879

Earthman CP, Beckman LM, Masodkar K, Sibley SD. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. International Journal of Obesity. 2011;36(3):387-396. doi:https://doi.org/10.1038/ijo.2011.119

Naderi N, House JD. Recent Developments in Folate Nutrition. Advances in Food and Nutrition Research. Published online 2018:195-213. doi:https://doi.org/10.1016/bs.afnr.2017.12.006

Zhao M, Yuan MM, Yuan L, et al. Chronic folate deficiency induces glucose and lipid metabolism disorders and subsequent cognitive dysfunction in mice. Nerurkar PV, ed. PLOS ONE. 2018;13(8):e0202910. doi:https://doi.org/10.1371/journal.pone.0202910

Bazzano LA, He J, Ogden LG, et al. Dietary Intake of Folate and Risk of Stroke in US Men and Women. Stroke. 2002;33(5):1183-1189. doi:https://doi.org/10.1161/01.str.0000014607.90464.88

Wang LX, Gurka MJ, Deboer MD. Metabolic syndrome severity and lifestyle factors among adolescents. Minerva Pediatrica. 2018;70(5). doi:https://doi.org/10.23736/s0026-4946.18.05290-8

Opublikowane

7 maja 2024