Wykorzystanie sztucznej inteligencji w analizie obrazów endoskopowych: Automatyczna detekcja zmian patologicznych

Autorzy

Michał Azierski
Studenckie Koło Naukowe MedTech przy Centrum Kształcenia Zdalnego i Analizy Efektów Edukacyjnych, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny
https://orcid.org/0009-0009-7247-2086
Michał Dróżdż
Studenckie Koło Naukowe MedTech przy Centrum Kształcenia Zdalnego i Analizy Efektów Edukacyjnych, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny
Marcin Rojek
Studenckie Koło Naukowe MedTech przy Centrum Kształcenia Zdalnego i Analizy Efektów Edukacyjnych, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny

Słowa kluczowe:

sztuczna inteligencja, AI, endoskopia, gastroenterologia, sieci neuronowe

Streszczenie

Sztuczna inteligencja (SI) stanowi obiecującą perspektywę dla dziedziny medycznej diagnostyki poprzez jej integrację w analizę endoskopową, co przynosi znaczące rezultaty w automatycznym wykrywaniu zmian patologicznych. W ostatnich latach, wykorzystanie konwolucyjnych sieci neuronowych w analizie obrazów endoskopowych zdobyło znaczną uwagę, co zaowocowało doskonałością w detekcji oraz charakteryzacji zmian patologicznych. Zautomatyzowane systemy do analizy obrazów endoskopowych nie tylko wykazały obiecujące wyniki, lecz także posiadają potencjał rewolucyjnego wpływu na procesy diagnostyczne, przyczyniając się do poprawy precyzji i efektywności diagnostycznej. Wdrożenie sztucznej inteligencji w interpretacji obrazów medycznych znacząco przyspieszyło postęp w dziedzinie endoskopii, wykazując nadzwyczajny potencjał do dalszych usprawnień w diagnostyce medycznej. Zastosowanie SI w analizie obrazów endoskopowych otwiera nowe możliwości w diagnostyce medycznej, umożliwiając szybsze i bardziej precyzyjne wykrywanie zmian patologicznych, co może przyczynić się do poprawy wyników pacjentów oraz efektywności opieki zdrowotnej. Ponadto, integracja SI w endoskopii może przyczynić się do standaryzacji analizy między różnymi endoskopistami, redukując zmienność między obserwatorami oraz umożliwiając bardziej efektywne wykorzystanie zasobów endoskopowych. Dodatkowo, SI może pomóc w analizie dynamicznych zmian na obrazach endoskopowych, takich jak rozpoznawanie wzorców naczyniowych lub błon śluzowych, co może być wskaźnikiem postępu choroby lub reakcji na leczenie. Wnioski z dotychczasowych badań wskazują na obiecujący potencjał SI w rewolucjonizowaniu dziedziny analizy endoskopowej i poprawianiu wyników pacjentów. Dalsze badania i rozwój algorytmów SI w analizie endoskopowej mogą przynieść dalsze korzyści, takie jak zwiększenie dokładności diagnostycznej, poprawa efektywności oraz udzielanie wskazówek w czasie rzeczywistym podczas procedur endoskopowych.

Biogram autora

Michał Azierski - Studenckie Koło Naukowe MedTech przy Centrum Kształcenia Zdalnego i Analizy Efektów Edukacyjnych, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny

Medical Student with a Passion for Surgery, New Technologies, and Medical Robotics. As a dedicated medical student with a keen interest in surgery, I am driven to explore the cutting-edge advancements in the field of medicine. Alongside my fascination for surgical techniques, I am also deeply intrigued by the transformative potential of new technologies and medical robotics in revolutionizing healthcare. I possess a strong commitment to learning and continually strive to expand my knowledge and skills in both traditional and innovative approaches to surgery. Beyond the realm of medicine, I nurture a profound enthusiasm for astrophysics and quantum physics. The profound mysteries of the universe and the intricacies of quantum phenomena fascinate me, and I actively engage in exploring the latest developments and theories in these fields. With a well-rounded academic background and an insatiable curiosity, I am poised to contribute to the ever-evolving landscape of medicine. I am eager to collaborate with like-minded professionals and organizations that share my passion for pushing the boundaries of medical knowledge and improving patient outcomes.

Bibliografia

Lee, B D., & Lee, M S. (2021, January 1). Automated Bone Age Assessment Using Artificial Intelligence: The Future of Bone Age Assessment. https://doi.org/10.3348/kjr.2020.0941

Sullivan P, Gupta S, Powers PD, Marya NB. Artificial Intelligence Research and Development for Application in Video Capsule Endoscopy. Gastrointestinal Endoscopy Clinics of North America. 2021;31(2):387-397. doi:https://doi.org/10.1016/j.giec.2020.12.009

Shen D, Wu G, Suk HI. Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering. 2017;19(1):221-248. doi:https://doi.org/10.1146/annurev-bioeng-071516-044442

Gan T, Liu S, Yang J, Zeng B, Yang L. A pilot trial of Convolution Neural Network for automatic retention-monitoring of capsule endoscopes in the stomach and duodenal bulb. Scientific Reports. 2020;10(1):4103. doi:https://doi.org/10.1038/s41598-020-60969-5

Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer. 2019;23(1):126-132. doi:https://doi.org/10.1007/s10120-019-00992-2

Review on the Applications of Deep Learning in the Analysis of Gastrointestinal Endoscopy Images | IEEE Journals & Magazine | IEEE Xplore. ieeexplore.ieee.org. Accessed December 28, 2023. https://ieeexplore.ieee.org/document/8853349/

Song Y, Mao X, Zhou X, et al. Use of Artificial Intelligence to Improve the Quality Control of Gastrointestinal Endoscopy. Frontiers in Medicine. 2021;8. doi:https://doi.org/10.3389/fmed.2021.709347

Fusco, R., Piccirillo, A., Sansone, M., Granata, V., Rubulotta, M R., Petrosino, T., Barretta, M L., Vallone, P., Giacomo, R D., Esposito, E., Bonito, M D., & Petrillo, A. (2021, April 30). Radiomics and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography in the Breast Lesions Classification. https://doi.org/10.3390/diagnostics11050815

Goel, C., Kumar, A., Dubey, S., & Srivastava, V. (2020, August 17). Efficient Deep Network Architecture for COVID-19 Detection Using Computed Tomography Images. https://doi.org/10.1101/2020.08.14.20170290

Yu, X., Song, Z., Zou, S., You, Y., Cui, J., Wang, S., Ku, C., Wu, X., Xue, X., Han, W., & Zhou, W. (2022, June 9). Artificial Intelligence Assisted Topographic Mapping System for Endoscopic Submucosal Dissection Specimens.

Fusco R, Grassi R, Granata V, et al. Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-ray Images: Machine Learning and Deep Learning Approaches for Diagnosis and Treatment. Journal of Personalized Medicine. 2021;11(10):993. doi:https://doi.org/10.3390/jpm11100993

Goel N, Kaur S, Gunjan D, Mahapatra SJ. Dilated CNN for abnormality detection in wireless capsule endoscopy images. Soft Computing. 2022;26(3):1231-1247. doi:https://doi.org/10.1007/s00500-021-06546-y

Yu, X., Song, Z., Zou, S., You, Y., Cui, J., Wang, S., Ku, C., Wu, X., Xue, X., Han, W., & Zhou, W. (2022, June 9). Artificial Intelligence Assisted Topographic Mapping System for Endoscopic Submucosal Dissection Specimens.

Ribeiro E, Uhl A, Wimmer G, Häfner M. Transfer Learning for Colonic Polyp Classification Using Off-the-Shelf CNN Features. Lecture Notes in Computer Science. Published online January 1, 2017:1-13. doi:https://doi.org/10.1007/978-3-319-54057-3_1

Gaeed AK, Khalida Alwan Mansour. Effectiveness of the Instructional Program on Physical and Psychological Status of Patients Undergoing Upper Gastrointestinal Endoscopy at Baghdad Teaching Hospitals. kufa Journal for Nursing sciences. 2015;5(1):137-147. doi:https://doi.org/10.36321/kjns.vi20151.3160

Škiljić S, Budrovac D, Cicvarić A, Nenad Nešković, Slavica Kvolik. Advances in Analgosedation and Periprocedural Care for Gastrointestinal Endoscopy. Life. 2023;13(2):473-473. doi:https://doi.org/10.3390/life13020473

Shin K, Lee JS, Lee JY, et al. An Image Turing Test on Realistic Gastroscopy Images Generated by Using the Progressive Growing of Generative Adversarial Networks. Journal of Digital Imaging. Published online March 13, 2023. doi:https://doi.org/10.1007/s10278-023-00803-2

Roscoe RD, Becker DV, Branaghan RJ, et al. Bridging psychology and engineering to make technology work for people. American Psychologist. 2019;74(3):394-406. doi:https://doi.org/10.1037/amp0000444

Cohen J, Safdi MA, Deal SE, et al. Quality Indicators for Esophagogastroduodenoscopy. Official journal of the American College of Gastroenterology | ACG. 2006;101(4):886. Accessed December 28, 2023. https://journals.lww.com/ajg/citation/2006/04000/quality_indicators_for_esophagogastroduodenoscopy.33.aspx

Ahmed O, Ajani JA, Lee JH. Endoscopic management of esophageal cancer. World Journal of Gastrointestinal Oncology. 2019;11(10):830-841. doi:https://doi.org/10.4251/wjgo.v11.i10.830

Sonnenberg A, Amorosi SL, Lacey MJ, Lieberman DA. Patterns of endoscopy in the United States: analysis of data from the Centers for Medicare and Medicaid Services and the National Endoscopic Database. Gastrointestinal Endoscopy. 2008;67(3):489-496. doi:https://doi.org/10.1016/j.gie.2007.08.041

Ribeiro T. Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions using a convolutional neural network. Annals of Gastroenterology. Published online 2021. doi:https://doi.org/10.20524/aog.2021.0653

Dong Z, Wu L, Mu G, et al. A deep learning-based system for real-time image reporting during esophagogastroduodenoscopy: a multicenter study. Endoscopy. 2022;54(08):771-777. doi:https://doi.org/10.1055/a-1731-9535

Ebigbo A, Palm C, Probst A, et al. A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology. Endoscopy International Open. 2019;07(12):E1616-E1623. doi:https://doi.org/10.1055/a-1010-5705

Riemann JF, Teufel A. Digital Communication Strategies in Visceral Medicine. Visceral Medicine. 2021;37(6):455-457. doi:https://doi.org/10.1159/000518878

Filipe Vilas-Boas, Ribeiro T, Afonso J, et al. Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study. Diagnostics. 2022;12(9):2041-2041. doi:https://doi.org/10.3390/diagnostics12092041

Ribeiro, T., Saraiva, M M., Ferreira, J., Cardoso, H., Afonso, J., Andrade, P., Parente, M., Jorge, R N., & Macedo, G. (2021, January 1). Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions using a convolutional neural network. https://doi.org/10.20524/aog.2021.0653

Mărginean, C O., Meliţ, L E., & Săsăran, M O. (2022, July 1). Traditional and Modern Diagnostic Approaches in Diagnosing Pediatric Helicobacter pylori Infection. https://doi.org/10.3390/children9070994

Bang, C S., Lee, J J., & Baik, G H. (2021, December 14). Computer-Aided Diagnosis of Gastrointestinal Ulcer and Hemorrhage Using Wireless Capsule Endoscopy: Systematic Review and Diagnostic Test Accuracy Meta-analysis.

Yu, F., Song, E., Liu, H., Zhu, J., & Hung, C. (2019, January 1). Laparoscopic Image-Guided System Based on Multispectral Imaging for the Ureter Detection.

Mascarenhas, M., Ribeiro, T., Afonso, J., Andrade, P., Cardoso, P., Ferreira, J., Cardoso, H., & Macedo, G. (2021, December 18). Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia.

Seok, C W. (2020, September 16). Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis Of Diagnostic Test Accuracy.

Kim, J H., Oh, S., Han, S., Keum, J., Kim, K., Chun, J., Youn, Y H., & Park, H. (2022, December 5). An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer.

Riemann, J F., & Teufel, A. (2021, January 1). Digital Communication Strategies in Visceral Medicine. https://doi.org/10.1159/000518878

Vilas-Boas, F., Ribeiro, T., Afonso, J., Cardoso, H., Lopes, S., Moutinho-Ribeiro, P., Ferreira, J., Mascarenhas, M., & Macedo, G. (2022, August 24). Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study.

Dong, Z., Wu, L., Mu, G., Zhou, W., Li, Y., Shi, Z., Xia, T., Liu, S., Zhu, Q., Shang, R., Zhang, M., Zhang, L., Xu, M., Zhu, Y., Xiao, T., Chen, T., Li, X., Zhang, C., He, X., . . . Yu, H. (2022, March 10). A deep learning-based system for real-time image reporting during esophagogastroduodenoscopy: a multicenter study. https://doi.org/10.1055/a-1731-9535

Mărginean CO, Meliț LE, Săsăran MO. Traditional and Modern Diagnostic Approaches in Diagnosing Pediatric Helicobacter pylori Infection. Children. 2022;9(7):994. doi:https://doi.org/10.3390/children9070994

Bang CS, Lee JJ, Baik GH. Computer-Aided Diagnosis of Gastrointestinal Ulcer and Hemorrhage Using Wireless Capsule Endoscopy: Systematic Review and Diagnostic Test Accuracy Meta-analysis. Journal of Medical Internet Research. 2021;23(12):e33267. doi:https://doi.org/10.2196/33267

Yu F, Song E, Liu H, Zhu J, Hung C. Laparoscopic Image-Guided System Based on Multispectral Imaging for the Ureter Detection. IEEE Access. 2019;7:3800-3809. doi:https://doi.org/10.1109/access.2018.2889138

Mascarenhas Saraiva M, Ribeiro T, Afonso J, et al. Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia. Medicina. 2021;57(12):1378. doi:https://doi.org/10.3390/medicina57121378

Bang CS, Lee JJ, Baik GH. Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis Of Diagnostic Test Accuracy. Journal of Medical Internet Research. 2020;22(9):e21983. doi:https://doi.org/10.2196/21983

Kim JH, Oh SI, Han SY, et al. An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers. 2022;14(23):6000. doi:https://doi.org/10.3390/cancers14236000

Riemann JF, Teufel A. Digital Communication Strategies in Visceral Medicine. Visceral Medicine. 2021;37(6):455-457. doi:https://doi.org/10.1159/000518878

Fitzgerald RC, di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut. 2013;63(1):7-42. doi:https://doi.org/10.1136/gutjnl-2013-305372

Ali S, Zhou F, Braden B, et al. An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. 2020;10(1). doi:https://doi.org/10.1038/s41598-020-59413-5

Li J, Wang L, Ang T. Artificial intelligence-assisted colonoscopy: a narrative review of current data and clinical applications. Singapore Medical Journal. 2022;63(3):118-124. doi:https://doi.org/10.11622/smedj.2022044

Kumagai Y, Kaiyo Takubo, Kawada K, et al. Endocytoscopic Observation of Esophageal Lesions: Our Own Experience and a Review of the Literature. Diagnostics. 2022;12(9):2222-2222. doi:https://doi.org/10.3390/diagnostics12092222

Misumi Y, Nonaka K, Takeuchi M, et al. Comparison of the Ability of Artificial-Intelligence-Based Computer-Aided Detection (CAD) Systems and Endoscopists to Detect Colorectal Neoplastic Lesions on Endoscopy Video. Journal of Clinical Medicine. 2023;12(14):4840. doi:https://doi.org/10.3390/jcm12144840

Ebigbo A, Palm C, Probst A, et al. A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology. Endoscopy International Open. 2019;07(12):E1616-E1623. doi:https://doi.org/10.1055/a-1010-5705

Xue P, Qiao YL, Jiang Y. [Application of artificial intelligence in diagnosis of medical endoscope]. Zhonghua Zhong Liu Za Zhi [Chinese Journal of Oncology]. 2018;40(12):890-893. doi:https://doi.org/10.3760/cma.j.issn.0253-3766.2018.12.003

Bang CS, Lee JJ, Baik GH. Computer-Aided Diagnosis of Gastrointestinal Ulcer and Hemorrhage Using Wireless Capsule Endoscopy: Systematic Review and Diagnostic Test Accuracy Meta-analysis. Journal of Medical Internet Research. 2021;23(12):e33267. doi:https://doi.org/10.2196/33267

Yu X, Song Z, Zou S, et al. Artificial Intelligence Assisted Topographic Mapping System for Endoscopic Submucosal Dissection Specimens. Frontiers in Medicine. 2022;9. doi:https://doi.org/10.3389/fmed.2022.822731

Filipe Vilas-Boas, Ribeiro T, Afonso J, et al. Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study. Diagnostics. 2022;12(9):2041-2041. doi:https://doi.org/10.3390/diagnostics12092041

Vilas-Boas, F., Ribeiro, T., Afonso, J., Cardoso, H., Lopes, S., Moutinho-Ribeiro, P., Ferreira, J., Mascarenhas, M., & Macedo, G. (2022, August 24). Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study. https://doi.org/10.3390/diagnostics12092041

Spadaccini, M., Massimi, D., Mori, Y., Alfarone, L., Fugazza, A., Maselli, R., Facciorusso, A., Hassan, C., & Repici, A. (2023, March 14). Artificial Intelligence-Aided Endoscopy and Colorectal Cancer Screening. https://doi.org/10.3390/diagnostics13061102

Zhang, M., Zhu, C., Wang, Y., Kong, Z., Hua, Y., Zhang, W., Si, X., Ye, B., Xü, X., Li, L., Heng, D., Liu, B., Song, T., Wu, J., Dang, Y., & Zhang, G. (2021, June 1). Differential diagnosis for esophageal protruded lesions using a deep convolution neural network in endoscopic images.

Opublikowane

7 maja 2024