Innowacyjne wykorzystanie mikroRNA w diagnostyce zespołu policystycznych jajników

Autorzy

Gabriela Szpila
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Angelika Garbacik
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Marta Leidgens
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Julia Szczotka
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

zespół policystycznych jajników, PCOS, mikroRNA, biomarker, diagnostyka

Streszczenie

Według badań epidemiologicznych zespół policystycznych jajników dotyczy 5-20% kobiet w wieku reprodukcyjnym. Mimo dostępności w praktyce klinicznej wielu metod diagnostycznych, stale poszukuje się strategii, która pozwoli wykryć chorobę w początkowym jej stadium oraz określić jej fenotyp. Duży przełom stanowi odkrycie cząsteczek miRNA, które są najprawdopodobniej powiązane z patofizjologią PCOS.  Mogą one występować zarówno wewnątrzkomórkowo m.in. w komórkach ziarnistych otaczających oocyty, jak i pozakomórkowo - w płynie pęcherzykowym jajnika czy też w surowicy. 

Celem niniejszej pracy jest przedstawienie wyników przeglądu literatury w zakresie najważniejszych aktualnych informacji na temat roli mikroRNA w diagnostyce PCOS oraz skupienie się na występowaniu miRNA w płynach pozakomórkowych.  

Bibliografia

Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. Opublikowano: 11.08.2016 r. doi:10.1038/nrdp.2016.57

Ee C, Pirotta S, Mousa A, Moran L, Lim S. Providing lifestyle advice to women with PCOS: an overview of practical issues affecting success. BMC Endocr Disord. 2021;21(1):234. Opublikowano 23.11.2021 r. doi:10.1186/s12902-021-00890-8

Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41. Opublikowano: 30.06.2010 r. doi:10.1186/1741-7015-8-41

Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270-284. doi:10.1038/nrendo.2018.24

Azziz R, Carmina E, Dewailly D, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456-488. doi:10.1016/j.fertnstert.2008.06.035

Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19-25. doi:10.1016/j.fertnstert.2003.10.004

Teede HJ, Joham AE, Paul E, et al. Longitudinal weight gain in women identified with polycystic ovary syndrome: results of an observational study in young women. Obesity (Silver Spring). 2013;21(8):1526-1532. doi:10.1002/oby.20213

Barry JA, Kuczmierczyk AR, Hardiman PJ. Anxiety and depression in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2011;26(9):2442-2451. doi:10.1093/humrep/der197

de Groot PC, Dekkers OM, Romijn JA, Dieben SW, Helmerhorst FM. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Hum Reprod Update. 2011;17(4):495-500. doi:10.1093/humupd/dmr001

Tamaddon M, Azimzadeh M, Tavangar SM. microRNAs and long non‐coding RNAs as biomarkers for polycystic ovary syndrome. Journal of Cellular and Molecular Medicine. 2022;26(3):654-670. doi:10.1111/jcmm.17139

Bachanek M, Abdalla N, Cendrowski K, Sawicki W. Value of ultrasonography in the diagnosis of polycystic ovary syndrome - literature review. J Ultrason. 2015;15(63):410-422. doi:10.15557/JoU.2015.0038

Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome [published correction appears in Hum Reprod. 2019 Feb 1;34(2):388]. Hum Reprod. 2018;33(9):1602-1618. doi:10.1093/humrep/dey256

Azziz R, Carmina E, Dewailly D, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006;91(11):4237-4245. doi:10.1210/jc.2006-0178

Zhang HY, Guo CX, Zhu FF, Qu PP, Lin WJ, Xiong J. Clinical characteristics, metabolic features, and phenotype of Chinese women with polycystic ovary syndrome: a large-scale case-control study. Arch Gynecol Obstet. 2013;287(3):525-531. doi:10.1007/s00404-012-2568-z

Fulghesu AM, Angioni S, Frau E, et al. Ultrasound in polycystic ovary syndrome--the measuring of ovarian stroma and relationship with circulating androgens: results of a multicentric study. Hum Reprod. 2007;22(9):2501-2508. doi:10.1093/humrep/dem202

Balen AH, Laven JS, Tan SL, Dewailly D. Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum Reprod Update. 2003;9(6):505-514. doi:10.1093/humupd/dmg044

Pigny P, Merlen E, Robert Y, et al. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab. 2003;88(12):5957-5962. doi:10.1210/jc.2003-030727

Laven JS, Mulders AG, Visser JA, Themmen AP, De Jong FH, Fauser BC. Anti-Müllerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. J Clin Endocrinol Metab. 2004;89(1):318-323. doi:10.1210/jc.2003-030932

Iliodromiti S, Kelsey TW, Anderson RA, Nelson SM. Can anti-Mullerian hormone predict the diagnosis of polycystic ovary syndrome? A systematic review and meta-analysis of extracted data. J Clin Endocrinol Metab. 2013;98(8):3332-3340. doi:10.1210/jc.2013-13

Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202-1207. doi:10.1016/j.jaci.2017.08.034

Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci. 2007;32(4):189-197. doi:10.1016/j.tibs.2007.02.006

Vitale SG, Fulghesu AM, Mikuš M, Watrowski R, D’Alterio MN, Lin L-T, Shah M, Reyes-Muñoz E, Sathyapalan T, Angioni S. The Translational Role of miRNA in Polycystic Ovary Syndrome: From Bench to Bedside—A Systematic Literature Review. Biomedicines. 2022; 10(8):1816. https://doi.org/10.3390/biomedicines10081816

Witwer KW. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem. 2015;61(1):56-63. doi:10.1373/clinchem.2014.221341

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. doi:10.1038/ncb1596

Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54(3):482-490. doi:10.1373/clinchem.2007.097972

Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ. Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain. 2013;6:26. Opublikowano 24.05.2013 r. doi:10.1186/1756-6606-6-26

Li J, Wan Y, Guo Q, et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2010;12(3):R81. doi:10.1186/ar3006

Grunert M, Appelt S, Dunkel I, Berger F, Sperling SR. Altered microRNA and target gene expression related to Tetralogy of Fallot. Sci Rep. 2019;9(1):19063. Opublikowano 13.12.201 Published 2019 Dec 13. doi:10.1038/s41598-019-55570-4

Javadi M, Rad JS, Farashah MSG, Roshangar L. An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reprod Sci. 2022;29(5):1395-1407. doi:10.1007/s43032-021-00556-9

Chen B, Xu P, Wang J, Zhang C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene. 2019;706:91-96. doi:10.1016/j.gene.2019.04.082

Escobar-Morreale HF, Luque-Ramírez M, San Millán JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev. 2005;26(2):251-282. doi:10.1210/er.2004-0004

Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Expert Reviews in Molecular Medicine. 2008;10:e3. doi:10.1017/S1462399408000598

Yildiz BO, Woods KS, Stanczyk F, Bartolucci A, Azziz R. Stability of Adrenocortical Steroidogenesis over Time in Healthy Women and Women with Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism. 2004;89(11):5558-5562. doi:10.1210/jc.2004-0934

Rosenfield RL. Ovarian and adrenal function in polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1999;28(2):265-293. doi:10.1016/s0889-8529(05)70070-0

Tsilchorozidou T, Honour JW, Conway GS. Altered cortisol metabolism in polycystic ovary syndrome: insulin enhances 5alpha-reduction but not the elevated adrenal steroid production rates. J Clin Endocrinol Metab. 2003;88(12):5907-5913. doi:10.1210/jc.2003-030240

Song J, Luo S, Li SW. miRNA-592 is downregulated and may target LHCGR in polycystic ovary syndrome patients. Reprod Biol. 2015;15(4):229-237. doi:10.1016/j.repbio.2015.10.005

Murri M, Insenser M, Fernández-Durán E, San-Millán JL, Escobar-Morreale HF. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression. J Clin Endocrinol Metab. 2013;98(11):E1835-E1844. doi:10.1210/jc.2013-2218

Long W, Zhao C, Ji C, et al. Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell Physiol Biochem. 2014;33(5):1304-1315. doi:10.1159/000358698

Sørensen AE, Udesen PB, Wissing ML, Englund ALM, Dalgaard LT. MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chem Biol Interact. 2016;259(Pt A):8-16. doi:10.1016/j.cbi.2016.06.008

Arancio W, Calogero Amato M, Magliozzo M, Pizzolanti G, Vesco R, Giordano C. Serum miRNAs in women affected by hyperandrogenic polycystic ovary syndrome: the potential role of miR-155 as a biomarker for monitoring the estroprogestinic treatment. Gynecol Endocrinol. 2018;34(8):704-708. doi:10.1080/09513590.2018.1428299

Lim SS, Norman RJ, Davies MJ, Moran LJ. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev. 2013;14(2):95-109. doi:10.1111/j.1467-789X.2012.01053.x

Kuligowska-Jakubowska M, Dardzińska J, Rachoń D. Zaburzenia gospodarki węglowodanowej u kobiet z zespołem wielotorbielowatych jajników (PCOS). Diabetologia Kliniczna. 2012;1(5):185-195. Dostęp: 20.04.2023 r.

Sam S. Obesity and Polycystic Ovary Syndrome. Obes Manag. 2007;3(2):69-73. doi:10.1089/obe.2007.0019

Słoka N. Profil miRNA w surowicy u pacjentek z zespołem policystycznych jajników. ppm.edu.pl. Opublikowano: 16.11.2020 r. Dostęp: 18.05.2023 r. https://ppm.edu.pl/info/phd/UMW0e2b1925bbf34389baecd4a89d4f1479/

Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet. 2021;38(2):289-304. doi:10.1007/s10815-020-02019-7

Jiang L, Huang J, Chen Y, et al. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine. 2016;53(1):280-290. doi:10.1007/s12020-016-0878-9

Ginekologia po Dyplomie - Choroby endokrynologiczne utrudniające zajście w ciążę. Dostęp: 20.05.2023 r. https://podyplomie.pl/ginekologia/21966

Jiang L, Li W, Wu M, Cao S. Ciculating miRNA-21 as a Biomarker Predicts Polycystic Ovary Syndrome (PCOS) in Patients. Clin Lab. 2015;61(8):1009-1015. doi:10.7754/clin.lab.2015.150122

Sun T, Pepling ME, Diaz FJ. Lats1 Deletion Causes Increased Germ Cell Apoptosis and Follicular Cysts in Mouse Ovaries. Biol Reprod. 2015;93(1):22. doi:10.1095/biolreprod.114.118604

Eisenberg I, Nahmias N, Novoselsky Persky M, et al. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil Steril. 2017;107(1):269-275. doi:10.1016/j.fertnstert.2016.10.003

Cao J, Huo P, Cui K, et al. Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome [published correction appears in Cell Commun Signal. 2022 Aug 1;20(1):116]. Cell Commun Signal. 2022;20(1):61. Opublikowano: 09.05.2022 r. doi:10.1186/s12964-022-00876-6

Prins JR, Marissen LM, Scherjon SA, Hoek A, Cantineau AEP. Is there an immune modulating role for follicular fluid in endometriosis? A narrative review. Reproduction. 2020;159(1):R45-R54. doi:10.1530/REP-19-0050

Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31(3):355-362. doi:10.1007/s10815-013-0161-4

Sang Q, Yao Z, Wang H, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068-3079. doi:10.1210/jc.2013-1715

Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci. 2020;259:118174. doi:10.1016/j.lfs.2020.118174

Scalici E, Traver S, Mullet T, et al. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci Rep. 2016;6:24976. Opublikowano 22.04.2016 r. doi:10.1038/srep24976

Opublikowane

1 września 2023