Możliwości terapii mukowiscydozy. Terapia genowa

Autorzy

Matylda Kujawińska
Studenckie Koło Naukowe im. Zbigniewa Religii przy Katedrze Biofizyki w Zabrzu, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Iga Kwas
Studenckie Koło Naukowe im. Zbigniewa Religii przy Katedrze Biofizyki w Zabrzu, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Kacper Kuzan
Studenckie Koło Naukowe im. Zbigniewa Religii przy Katedrze Biofizyki w Zabrzu, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

mukowiscydoza, płuca, PEP, terapia genowa, CRISPR/Cas9

Streszczenie

Abstrakt 

 

Mukowiscydoza to nieuleczalna choroba autosomalne recesywna wywołana mutacją genu regulatora transbłonowego CFTR. Choroba obejmuje drogi oddechowe, trzustkę, układ pokarmowy i gruczoły potowe. Najbardziej narażona na tę chorobę jest populacja rasy kaukaskiej. Mediana życia pacjentów ciągle rośnie, dzięki poszerzających się typach terapii. Zaliczamy do nich leczenie farmakologiczne, fizjoterapie, leczenie żywieniowe oraz przeszczep płuc. Szansę na wyleczenie chorych daje terapia genowa, dynamicznie rozwijająca się dziedzina medycyny, która narazie jest w fazie badań klinicznych.

 

Słowa kluczowe: mukowiscydoza, płuca, PEP, terapia genowa, CRISPR/Cas9.

 

Abstract

 

Cystic fibrosis is an incurable autosomal recessive disease caused by a mutation of the CFTR transmembrane regulator gene. The disease involves the respiratory tract, pancreas, digestive system and sweat glands. The most vulnerable is the Caucasian population. The median lifespan continues to grow, thanks to expanding types of treatments. These include pharmacological treatment, physiotherapy, nutrition treatment and lung transplantation. Gene therapy gives a chance to cure the disease, the field of medicine is dynamically developing, which is currently in the phase of clinical trials.

 

Key words: cystic fibrosis, lungs, PEP, gene therapy, CRISPR/Cas9.

Rozdziały

  • Możliwości terapii mukowiscydozy. Terapia genowa

Bibliografia

Maule G, Arosio D, Cereseto A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int J Mol Sci. 2020;21(11):3903. doi:10.3390/ijms21113903

Radlović N. Cystic fibrosis. Srp Arh Celok Lek. 2012;140(3-4):244-249.

Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med. 2017;15(1):84. doi:10.1186/s12967-017-1193-9

MacKenzie T, Gifford AH, Sabadosa KA, et al. Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the Cystic Fibrosis Foundation patient registry. Ann Intern Med. 2014;161(4):233-241. doi:10.7326/M13-0636

Brown SD, White R, Tobin P. Keep them breathing: Cystic fibrosis pathophysiology, diagnosis, and treatment. JAAPA. 2017;30(5):23. doi:10.1097/01.JAA.0000515540.36581.92

Martiniano SL, Hoppe JE, Sagel SD, Zemanick ET. Advances in the diagnosis and treatment of cystic fibrosis. Adv Pediatr. 2014;61(1):225-243. doi:10.1016/j.yapd.2014.03.002

Middleton PG, Mall MA, Dřevínek P, et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med. 2019;381(19):1809-1819. doi:10.1056/NEJMoa1908639

Griese M, Costa S, Linnemann RW, et al. Safety and Efficacy of Elexacaftor/Tezacaftor/Ivacaftor for 24 Weeks or Longer in People with Cystic Fibrosis and One or More F508del Alleles: Interim Results of an Open-Label Phase 3 Clinical Trial. Am J Respir Crit Care Med. 2021;203(3):381-385. doi:10.1164/rccm.202008-3176LE

Lumacaftor/ivacaftor for cystic fibrosis. Aust Prescr. 2019;42(5):170-171. doi:10.18773/austprescr.2019.058

Quon BS, Rowe SM. New and emerging targeted therapies for cystic fibrosis. BMJ. 2016;352:i859. doi:10.1136/bmj.i859

Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220-231. doi:10.1056/NEJMoa1409547

Charakterystyka Produktu Leczniczego Orkambi 100mg + 125 mg. Europejska Agencja Leków.

Brownell JN, Bashaw H, Stallings VA. Growth and Nutrition in Cystic Fibrosis. Semin Respir Crit Care Med. 2019;40(6):775-791. doi:10.1055/s-0039-1696726

Turck D, Braegger CP, Colombo C, et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016;35(3):557-577. doi:10.1016/j.clnu.2016.03.004

Gorji Z, Modaresi M, Yekanni-Nejad S, Rezaei N, Mahmoudi M. Comparing effects of low glycemic index/high-fat, high-calorie diet and high-fat, high-calorie diet on cytokine levels of patients with cystic fibrosis: A randomized controlled clinical trial. Eur Cytokine Netw. 2020;31(1):32-38. doi:10.1684/ecn.2020.0442

Shimmin D, Lowdon J, Remmington T. Enteral tube feeding for cystic fibrosis. Cochrane Database Syst Rev. 2019;2019(7):CD001198. doi:10.1002/14651858.CD001198.pub5

Shah P, Lowery E, Chaparro C, et al. Cystic fibrosis foundation consensus statements for the care of cystic fibrosis lung transplant recipients. J Heart Lung Transplant. 2021;40(7):539-556. doi:10.1016/j.healun.2021.04.011

Ramos KJ, Smith PJ, McKone EF, et al. Lung transplant referral for individuals with cystic fibrosis: Cystic Fibrosis Foundation consensus guidelines. J Cyst Fibros. 2019;18(3):321-333. doi:10.1016/j.jcf.2019.03.002

Martin C, Hamard C, Kanaan R, et al. Causes of death in French cystic fibrosis patients: The need for improvement in transplantation referral strategies! J Cyst Fibros. 2016;15(2):204-212. doi:10.1016/j.jcf.2015.09.002

Braun AT, Dasenbrook EC, Shah AS, Orens JB, Merlo CA. Impact of lung allocation score on survival in cystic fibrosis lung transplant recipients. J Heart Lung Transplant. 2015;34(11):1436-1441. doi:10.1016/j.healun.2015.05.020

Desmond KJ, Schwenk WF, Thomas E, Beaudry PH, Coates AL. Immediate and long-term effects of chest physiotherapy in patients with cystic fibrosis. J Pediatr. 1983;103(4):538-542. doi:10.1016/s0022-3476(83)80579-4

McIlwaine M, Button B, Nevitt SJ. Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis. Cochrane Database Syst Rev. 2019;2019(11):CD003147. doi:10.1002/14651858.CD003147.pub5

Newbold ME, Tullis E, Corey M, Ross B, Brooks D. The Flutter Device versus the PEP Mask in the Treatment of Adults with Cystic Fibrosis. Physiotherapy Canada. 2005;57(3):199-207. doi:10.3138/ptc.57.3.199

Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-169. doi:10.1016/j.gene.2013.03.137

Alton EWFW, Armstrong DK, Ashby D, et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3(9):684-691. doi:10.1016/S2213-2600(15)00245-3

Tewkesbury DH, Robey RC, Barry PJ. Progress in precision medicine in cystic fibrosis: a focus on CFTR modulator therapy. Breathe (Sheff). 2021;17(4):210112. doi:10.1183/20734735.0112-2021

Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096-8106. doi:10.1128/mcb.14.12.8096-8106.1994

Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev. 2009;61(2):115-127. doi:10.1016/j.addr.2008.09.011

Knowles MR, Hohneker KW, Zhou Z, et al. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995;333(13):823-831. doi:10.1056/NEJM199509283331302

Zabner J, Ramsey BW, Meeker DP, et al. Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. J Clin Invest. 1996;97(6):1504-1511. doi:10.1172/JCI118573

Wagner JA, Nepomuceno IB, Shah N, et al. Maxillary sinusitis as a surrogate model for CF gene therapy clinical trials in patients with antrostomies. J Gene Med. 1999;1(1):13-21. doi:10.1002/(sici)1521-2254(199901/02)1:1<13::aid-jgm6>3.3.co;2-7

Wagner JA, Nepomuceno IB, Messner AH, et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther. 2002;13(11):1349-1359. doi:10.1089/104303402760128577

Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993;75(2):207-216. doi:10.1016/0092-8674(93)80063-k

Alton EWFW, Boyd AC, Davies JC, et al. Genetic medicines for CF: Hype versus reality. Pediatr Pulmonol. 2016;51(S44):S5-S17. doi:10.1002/ppul.23543

Crystal RG, McElvaney NG, Rosenfeld MA, et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994;8(1):42-51. doi:10.1038/ng0994-42

Moss RB, Milla C, Colombo J, et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther. 2007;18(8):726-732. doi:10.1089/hum.2007.022

Rogers CS, Abraham WM, Brogden KA, et al. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L240-263. doi:10.1152/ajplung.90203.2008

Johnson-Delaney CA, Orosz SE. Ferret respiratory system: clinical anatomy, physiology, and disease. Vet Clin North Am Exot Anim Pract. 2011;14(2):357-367, vii. doi:10.1016/j.cvex.2011.03.001

Alton E, Stern M, Farley R, et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. The Lancet. 1999;353(9157):947-954. doi:10.1016/S0140-6736(98)06532-5

Moss RB, Rodman D, Spencer LT, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest. 2004;125(2):509-521. doi:10.1378/chest.125.2.509

Marangi M, Pistritto G. Innovative Therapeutic Strategies for Cystic Fibrosis: Moving Forward to CRISPR Technique. Front Pharmacol. 2018;9:396. doi:10.3389/fphar.2018.00396

Ma Y, Zhang L, Huang X. Genome modification by CRISPR/Cas9. FEBS J. 2014;281(23):5186-5193. doi:10.1111/febs.13110

Lee JA, Cho A, Huang EN, et al. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med. 2021;19(1):452. doi:10.1186/s12967-021-03099-4

Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther. 2021;29(2):571-586. doi:10.1016/j.ymthe.2020.09.028

Potential of helper-dependent Adenoviral vectors in CRISPR-cas9-mediated lung gene therapy - PMC. Accessed May 29, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305863/

CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium - PubMed. Accessed May 29, 2023. https://pubmed.ncbi.nlm.nih.gov/19621064/

Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653-658. doi:10.1016/j.stem.2013.11.002

Zhou ZP, Yang LL, Cao H, et al. In Vitro Validation of a CRISPR-Mediated CFTR Correction Strategy for Preclinical Translation in Pigs. Hum Gene Ther. 2019;30(9):1101-1116. doi:10.1089/hum.2019.074

Opublikowane

1 września 2023