Algorytm drzewa decyzyjnego w zastosowaniach medycznych

Autorzy

Marcin Rojek
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki
Michał Azierski

Słowa kluczowe:

sztuczna inteligencja, uczenie maszynowe, drzewo decyzyjne, medycyna

Streszczenie

Celem pracy było przybliżenie metod implementacji algorytmu drzewa decyzyjnego w kontekście potencjalnych i istniejących zastosowań medycznych. Uczenie maszynowe staje się coraz ważniejszym elementem innowacji w wielu dziedzinach, w tym w medycynie. Drzewo Decyzyjne jest jednym z najpowszechniej wykorzystywanych algorytmów, ze względu na łatwość implementacji i szerokie zastosowanie.

Bibliografia

Hastie T, Friedman J, Tibshirani R. The Elements of Statistical Learning. Springer New York; 2001. doi:https://doi.org/10.1007/978-0-387-21606-5

De Felice F, Crocetti D, Parisi M, et al. Decision tree algorithm in locally advanced rectal cancer: an example of over-interpretation and misuse of a machine learning approach. Journal of Cancer Research and Clinical Oncology. 2020;146(3):761-765. doi:https://doi.org/10.1007/s00432-019-03102-y

Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry. 2015;27(2):130-135. doi:https://doi.org/10.11919/j.issn.1002-0829.215044

Kozak J, Juszczuk P. Algorithms for constructing decision trees for predicting the effectiveness of the bank’s telemarketing campaign. Zeszyty Naukowe Uniwersytetu Szczecińskiego Studia Informatica. 2016;39:49-59. doi:https://doi.org/10.18276/si.2016.39-05

Javed Mehedi Shamrat FM, Ranjan R, Hasib KMd, Yadav A, Siddique AH. Performance Evaluation Among ID3, C4.5, and CART Decision Tree Algorithm. Pervasive Computing and Social Networking. Published online 2022:127-142. doi:https://doi.org/10.1007/978-981-16-5640-8_11

Ogheneovo EE, Nlerum PA. Iterative Dichotomizer 3 (ID3) Decision Tree: A Machine Learning Algorithm for Data Classification and Predictive Analysis. International Journal of Advanced Engineering Research and Science. 2020;7(4):514-521. doi:https://doi.org/10.22161/ijaers.74.60

Géron A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition. Helion; 2019.

Hawkins DM. The Problem of Overfitting. Journal of Chemical Information and Computer Sciences. 2004;44(1):1-12. doi:https://doi.org/10.1021/ci0342472

Mantovani RG, Horvath T, Cerri R, Vanschoren J, de Carvalho ACPLF. Hyper-Parameter Tuning of a Decision Tree Induction Algorithm. 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). Published online October 2016. doi:https://doi.org/10.1109/bracis.2016.018

Błaszczyk B, Czernecki R, Prędota-Panecka H. PROFILAKTYKA PIERWOTNA I WTÓRNA UDARÓW MÓZGU. studiamedyczne.ujk.edu.pl. Published 2009. Accessed May 14,2023.https://studiamedyczne.ujk.edu.pl/doc/SM_tom_9/Profilaktyka%20pierwotna%20i%20wtorna%20udarow%20mozgu.pdf

NFZ o zdrowiu. Udar niedokrwienny mózgu - ezdrowie.gov.pl. ezdrowie.gov.pl. Accessed May 14, 2023. https://ezdrowie.gov.pl/portal/home/badania-i-dane/zdrowe-dane/raporty/nfz-o-zdrowiu-udar-niedokrwienny-mozgu

Imura T, Iwamoto Y, Inagawa T, et al. Decision Tree Algorithm Identifies Stroke Patients Likely Discharge Home After Rehabilitation Using Functional and Environmental Predictors. Journal of Stroke and Cerebrovascular Diseases. 2021;30(4):105636. doi:https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105636

Dension D. A Bayesian CART algorithm. Biometrika. 1998;85(2):363-377. doi:https://doi.org/10.1093/biomet/85.2.363

De Felice F, Crocetti D, Parisi M, et al. Decision tree algorithm in locally advanced rectal cancer: an example of over-interpretation and misuse of a machine learning approach. Journal of Cancer Research and Clinical Oncology. 2020;146(3):761-765. doi:https://doi.org/10.1007/s00432-019-03102-y

Bramer M. Avoiding Overfitting of Decision Trees. Principles of Data Mining. Published online 2013:121-136. doi:https://doi.org/10.1007/978-1-4471-4884-5_9

Dietterich T. Overfitting and undercomputing in machine learning. ACM Computing Surveys. 1995;27(3):326-327. doi:https://doi.org/10.1145/212094.212114

Wang L, Zhu L, Jiang J, Wang L, Ni W. Decision tree analysis for evaluating disease activity in patients with rheumatoid arthritis. 2021;49(10):030006052110532-030006052110532. doi:https://doi.org/10.1177/03000605211053232

Głuszko P, Filipowicz-Sosnowska A, Tłustochowicz W. Reumatoidalne Zapalenie Stawów Rheumatoid Arthritis. Accessed May 15, 2023. https://reu.termedia.pl/pdf-160270-86783?filename=Rheumatoid%20arthritis.pdf

Safiri( S, Kolahi AA, Hoy D, et al. Global, regional, and national burden of neck pain in the general population, 1990-2017: systematic analysis of the Global Burden of Disease Study 2017. BMJ. Published online March 26, 2020:m791. doi:https://doi.org/10.1136/bmj.m791

Safiri( S, Kolahi AA, Hoy D, et al. Global, regional, and national burden of neck pain in the general population, 1990-2017: systematic analysis of the Global Burden of Disease Study 2017. BMJ. Published online March 26, 2020:m791. doi:https://doi.org/10.1136/bmj.m791

Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the Global Burden of Disease study 2017. Annals of the Rheumatic Diseases. 2019;78(11):1463-1471. doi:https://doi.org/10.1136/annrheumdis-2019-215920

Abdallah ZS, Du L, Webb GI. Data Preparation. Encyclopedia of Machine Learning and Data Mining. Published online 2017:318-327. doi:https://doi.org/10.1007/978-1-4899-7687-1_62

Zapowiedzi

22 sierpnia 2023