Terapia CAR-T w leczeniu guzów litych – zastosowanie i ograniczenia

Autorzy

Lidia Ziętek
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Katowicach, Śląski, Uniwersytet Medyczny w Katowicach
Robert Kasza
1. Studenckie Koło Naukowe im. Zbigniewa Religii przy Katedrze Biofizyki w Zabrzu, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Michał Janik
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Katowicach, Śląski, Uniwersytet Medyczny w Katowicach
Jakub Kufel
2. Katedra i Zakład Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

Słowa kluczowe:

terapia CAR-T, guzy lite

Streszczenie

Onkologia, jak każda dziedzina medycyny, ulega ciągłemu rozwojowi. W ciągu ostatnich kilkudziesięciu lat terapia komórkowa poczyniła ogromne postępy. Mimo to, nadal wiele aspektów jej zastosowania pozostaje wielką niewiadomą, a także wciąż jest głównym obiektem badań klinicznych nad terapiami onkologicznymi. Dotychczasowe doniesienia wskazują na to, iż terapia komórkowa, oparta na wykorzystaniu zsyntezowanego, chimerycznego receptora antygenowego (ang. chimeric antigen receptor, CAR), daje pozytywną perspektywę dla pacjentów onkologicznych. Niestety, mimo wielu potwierdzeń skuteczności i bezpieczeństwa tej terapii, nadal nie daje ona całkowitej pewności wyleczenia bez skutków ubocznych chorych z guzami litymi. W tym celu prowadzi się także próby i badania nad zmniejszeniem ograniczającego wpływu działania mikrośrodowiska guza w organizmie pacjenta. Celem poniższej pracy jest przegląd badań i przedstawienie aktualnej wiedzy dotyczącej tego zagadnienia. Prace badawcze zawarte w tym rozdziale skupiają się głównie na skierowaniu terapii CAR-T przeciwko wskazanym antygenom w konkretnych jednostkach chorobowych. Na chwilę obecną prowadzonych jest o wiele więcej badań skupiających się nad zastosowaniem terapii CAR-T, w których badacze dążą do uzyskania całkowitej skuteczności i bezpieczeństwa bez wystąpienia skutków ubocznych w leczeniu pacjentów onkologicznych, co umożliwi wprowadzenie jej w pełni do leczenia klinicznego w onkologii.

Bibliografia

Referencje:

Kmiecik, J., et al., Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol, 2013. 264(1-2): p. 71-83.

Lohr, J., et al., Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin Cancer Res, 2011. 17(13): p. 4296-308.

Filley, A.C., M. Henriquez, and M. Dey, CART Immunotherapy: Development, Success, and Translation to Malignant Gliomas and Other Solid Tumors. Front Oncol, 2018. 8: p. 453.

Wagner, J., et al., CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality? Mol Ther, 2020. 28(11): p. 2320-2339.

Zhang, B.L., et al., Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Sci China Life Sci, 2016. 59(4): p. 340-8.

Kershaw, M.H., et al., Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther, 2002. 13(16): p. 1971-80.

Feig, C., et al., Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A, 2013. 110(50): p. 20212-7.

Amelia Kierasińska, D.C., Marta Węgierska, Ewelina Stoczyńska-Fidelus, Piotr Rieske, Terapia CAR-T w onkologii i w innych dziedzinach medycyny. 2021.

Katz, S.C., et al., Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther, 2016. 23(5): p. 142-8.

Ahmed, N., et al., HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res, 2010. 16(2): p. 474-85.

Kahlon, K.S., et al., Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res, 2004. 64(24): p. 9160-6.

Morello, A., M. Sadelain, and P.S. Adusumilli, Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discov, 2016. 6(2): p. 133-46.

Brown, C.E., et al., Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med, 2016. 375(26): p. 2561-9.

Miao, H., et al., EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One, 2014. 9(4): p. e94281.

Abbott, R.C., et al., Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunology, 2021. 10(5): p. e1283.

Lim, M., et al., Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol, 2018. 15(7): p. 422-442.

Chistiakov, D.A., I.V. Chekhonin, and V.P. Chekhonin, The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. Eur J Pharmacol, 2017. 810: p. 70-82.

Faulkner, C., et al., EGFR and EGFRvIII analysis in glioblastoma as therapeutic biomarkers. Br J Neurosurg, 2015. 29(1): p. 23-29.

Himberger, A.B., et al., The natural history of EGFR and EGFRvIII in glioblastoma patients. J Transl Med, 2005. 3: p. 38.

Feldkamp, M.M., et al., Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery, 1999. 45(6): p. 1442-53.

Prigent, S.A., et al., Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. J Biol Chem, 1996. 271(41): p. 25639-45.

Nagane, M., et al., A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res, 1996. 56(21): p. 5079-86.

Johnson, L.A., et al., Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med, 2015. 7(275): p. 275ra22.

Sawicki, T., et al., A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel), 2021. 13(9).

Jelski, W. and B. Mroczko, Biochemical Markers of Colorectal Cancer - Present and Future. Cancer Manag Res, 2020. 12: p. 4789-4797.

Fan, J., et al., Development of CAR-T Cell Persistence in Adoptive Immunotherapy of Solid Tumors. Front Oncol, 2020. 10: p. 574860.

Hombach, A.A., G. Rappl, and H. Abken, Blocking CD30 on T Cells by a Dual Specific CAR for CD30 and Colon Cancer Antigens Improves the CAR T Cell Response against CD30(-) Tumors. Mol Ther, 2019. 27(10): p. 1825-1835.

Liang, Z., et al., Tandem CAR-T cells targeting FOLR1 and MSLN enhance the antitumor effects in ovarian cancer. Int J Biol Sci, 2021. 17(15): p. 4365-4376.

Zhang, Q., et al., The antitumor capacity of mesothelin-CAR-T cells in targeting solid tumors in mice. Mol Ther Oncolytics, 2021. 20: p. 556-568.

Zhou, Y., et al., Construction of chimeric antigen receptor‑modified T cells targeting EpCAM and assessment of their anti‑tumor effect on cancer cells. Mol Med Rep, 2019. 20(3): p. 2355-2364.

Xu, J., et al., HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer. Cell Death Dis, 2021. 12(12): p. 1109.

Qin, X., et al., Recent advances in CAR-T cells therapy for colorectal cancer. Front Immunol, 2022. 13: p. 904137.

Trayes, K.P. and S.E.H. Cokenakes, Breast Cancer Treatment. Am Fam Physician, 2021. 104(2): p. 171-178.

Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.

Heer, E., et al., Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study. Lancet Glob Health, 2020. 8(8): p. e1027-e1037.

Arnold, M., et al., Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022. 66: p. 15-23.

Yang, Y.H., et al., CAR-T Cell Therapy for Breast Cancer: From Basic Research to Clinical Application. Int J Biol Sci, 2022. 18(6): p. 2609-2626.

Ushio, J., et al., Pancreatic Ductal Adenocarcinoma: Epidemiology and Risk Factors. Diagnostics (Basel), 2021. 11(3).

Yeo, D., et al., The next wave of cellular immunotherapies in pancreatic cancer. Mol Ther Oncolytics, 2022. 24: p. 561-576.

Feng, K., et al., Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell, 2018. 9(10): p. 838-847.

Wang, Y., et al., CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology, 2018. 7(7): p. e1440169.

Liu, Y., et al., Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: A phase I clinical trial. Cytotherapy, 2020. 22(10): p. 573-580.

Hong, M., J.D. Clubb, and Y.Y. Chen, Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell, 2020. 38(4): p. 473-488.

Sterner, R.C. and R.M. Sterner, CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J, 2021. 11(4): p. 69.

Zhang, H., et al., New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci, 2016. 12(6): p. 718-29.

Beatty, G.L. and E.K. Moon, Chimeric antigen receptor T cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment. Oncoimmunology, 2014. 3(11): p. e970027.

Mohammed, S., et al., Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Mol Ther, 2017. 25(1): p. 249-258.

Anderson, K.G., I.M. Stromnes, and P.D. Greenberg, Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies. Cancer Cell, 2017. 31(3): p. 311-325.

Dix, A.R., et al., Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol, 1999. 100(1-2): p. 216-32.

Fecci, P.E., et al., Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res, 2006. 66(6): p. 3294-302.

Zou, J.P., et al., Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J Immunol, 1999. 162(8): p. 4882-92.

Wang, G., et al., Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression. Cancer Discov, 2016. 6(1): p. 80-95.

Moon, E.K., et al., Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res, 2014. 20(16): p. 4262-73.

Koneru, M., et al., IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology, 2015. 4(3): p. e994446.

Watkins, S.K., et al., IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol, 2007. 178(3): p. 1357-62.

Broderick, L., et al., IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated memory T cells. Clin Immunol, 2006. 118(2-3): p. 159-69.

Kilinc, M.O., et al., Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J Immunol, 2006. 177(10): p. 6962-73.

Intlekofer, A.M. and C.B. Thompson, At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol, 2013. 94(1): p. 25-39.

Ma, S., et al., Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci, 2019. 15(12): p. 2548-2560.

Harlin, H., et al., Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res, 2009. 69(7): p. 3077-85.

Kershaw, M.H., et al., A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res, 2006. 12(20 Pt 1): p. 6106-15.

Kakarla, S., X.T. Song, and S. Gottschalk, Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy, 2012. 4(11): p. 1129-38.

Lezcano, C., et al., PRAME Expression in Melanocytic Tumors. Am J Surg Pathol, 2018. 42(11): p. 1456-1465.

Miliotou, A.N. and L.C. Papadopoulou, CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Curr Pharm Biotechnol, 2018. 19(1): p. 5-18.

Yong, C.S.M., et al., CAR T-cell therapy of solid tumors. Immunol Cell Biol, 2017. 95(4): p. 356-363.

Opublikowane

18 czerwca 2023