Telestenting i telechirurgia - przyszłość interwencyjnego leczenia choroby niedokrwiennej serca

Autorzy

Piotr Granatowski - Studenckie Koło Naukowe im. Zbigniewa Religii przy Katedrze Biofizyki w Zabrzu, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Krzysztof Gładkowski; Barbara Grochowska; Aleksandra Kałuża; Karolina Gancarczyk; Julia Kaczmarczyk

Słowa kluczowe:

telestenting, telechirurgia, telemedycyna, choroba niedokrwienna serca

Streszczenie

Choroba niedokrwienna serca jest jedną z głównych przyczyn zgonów związanych z układem sercowo – naczyniowym na świecie. Podczas jej ostrego przebiegu duża część pacjentów potrzebuje natychmiastowej inwazyjnej operacji wszczepienia stentów, tak aby nie doprowadzić do niedokrwienia mięśnia sercowego i jego zawału. W ostatnich latach coraz większą popularnością w środowisku naukowym zyskała innowacyjna metoda telestentingu, łącząca w sobie instrumenty operacji chirurgicznej i zdalnego kierowania pracą robota przez wyszkolonych specjalistów. Jest ona poddawana badaniom i próbom, tak aby w przyszłości móc być praktykowana jako codzienna procedura medyczna. Dzięki zaawansowanej technologii medycznej i możliwości przeniesienia doświadczeń z badań o telestentingu na inne procedury chirurgiczne możliwe staje się wykonywanie dużej części operacji z dala od stołu operacyjnego, co nie bez konsekwencji ma swoje zalety i wady.

Bibliografia

Centers for Disease Control and Prevention, National Center for Health Statistics. About Multiple Cause of Death, 1999–2020. CDC WONDER Online Database website. Atlanta, GA: Centers for Disease Control and Prevention; 2022. Accessed February 21, 2022.

Tsao CW, Aday AW, Almarzooq ZI, Beaton AZ, Bittencourt MS, Boehme AK, et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153–e639.

Agency for Healthcare Research and Quality. Medical Expenditure Panel Survey (MEPS): household component summary tables: medical conditions, United States. Accessed April 8, 2021.

Madder, R. D., VanOosterhout, S., Parker, J., Sconzert, K., Li, Y., Kottenstette, N., … Bergman, P. (2020). Robotic telestenting performance in transcontinental and regional pre‐clinical models. Catheterization and Cardiovascular Interventions. doi:10.1002/ccd.29115

Madder RD, VanOosterhout S, Mulder A, Bush J, Martin S, Rash A, Tan JM 2nd, Parker J, Li Y, Kottenstette N, Bergman P, Nowak B. Feasibility of robotic telestenting over long geographic distances: a pre-clinical ex vivo and in vivo study. EuroIntervention. 2019 Aug 9;15(6):e510-e512. doi: 10.4244/EIJ-D-19-00106. PMID: 30987962.

Madder RD, VanOosterhout SM, Jacoby ME, Collins JS, Borgman AS, Mulder AN, Elmore MA, Campbell JL, McNamara RF, Wohns DH. Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study). EuroIntervention. 2017 Jan 20;12(13):1569-1576. doi: 10.4244/EIJ-D-16-00363. PMID: 28105993.

Brown JC, Gerhardt TE, Kwon E. Risk Factors For Coronary Artery Disease. 2022 Jun 5. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 32119297.

Wirtz, P. H., & von Känel, R. (2017). Psychological Stress, Inflammation, and Coronary Heart Disease. Current Cardiology Reports, 19(11). doi:10.1007/s11886-017-0919-x

Khamis, R. Y., Ammari, T., & Mikhail, G. W. (2016). Gender differences in coronary heart disease. Heart, 102(14), 1142–1149. doi:10.1136/heartjnl-2014-306463

Emerging Risk Factors for Coronary Heart Disease. (1996). European Heart Journal, 17(suppl 5), 509–510. doi:10.1093/eurheartj/17.suppl_5.509

Bai, M.-F., & Wang, X. (2019). Risk factors associated with coronary heart disease in women: a systematic review. Herz. doi:10.1007/s00059-019-4835-2

Dalen, J. E., Alpert, J. S., Goldberg, R. J., & Weinstein, R. S. (2014). The Epidemic of the 20th Century: Coronary Heart Disease. The American Journal of Medicine, 127(9), 807–812. doi:10.1016/j.amjmed.2014.04.015

Odegaard, A. O. (2013). Coronary heart disease: what hope for the developing world? Heart, 99(17), 1227–1229. doi:10.1136/heartjnl-2012-302888

Gruntzig AR, Senning A, Siegenthaler WE. Nonoperative dilation of coronary-artery stenosis – percutaneous transluminal coronary angioplasty. N Engl J Med. 1979;301:61-8.

Beyar R, Gruberg L, Deleanu D, Roguin A, Almagor Y, Cohen S, Kumar G, Wenderow T. Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial. J Am Coll Cardiol. 2006;47:296-300.

Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB, Weisz G. First-in-human evaluation of a novel roboticassisted coronary angioplasty system. JACC Cardiovasc Interv. 2011;4:460-5.

Ferrer-Roca O, Díaz De León RD, de Latorre FJ, Suárez-Delgado M, Di Persia L, Cordo M. Aviation medicine: challenges for telemedicine. J Telemed Telecare. 2002;8(1):1-4. doi: 10.1258/1357633021937352. PMID: 11809077.

Wegermann, Z. K., Swaminathan, R. V., & Rao, S. V. (2019). Cath Lab Robotics: Paradigm Change in Interventional Cardiology? Current Cardiology Reports, 21(10). doi:10.1007/s11886-019-1218-5

Atiyeh, B. S., Gunn, S. W. A., & Hayek, S. N. (2010). Provision of essential surgery in remote and rural areas of developed as well as low and middle income countries. International Journal of Surgery, 8(8), 581–585. doi:10.1016/j.ijsu.2010.07.291

Madder, R. D., VanOosterhout, S., Mulder, A., Bush, J., Martin, S., Rash, A. J., … Nowak, B. (2019). Network latency and long‐distance robotic telestenting: Exploring the potential impact of network delays on telestenting performance. Catheterization and Cardiovascular Interventions. doi:10.1002/ccd.28425

Kaifoszova Z, Kala P, Alexander T, Zhang Y, Huo Y, Snyders A, Delport R, Alcocer-Gamba MA, Gavidia LM. Stent for Life Initiative: leading example in building STEMI systems of care in emerging countries. EuroIntervention. 2014 Aug;10 Suppl T:T87-95. doi: 10.4244/EIJV10STA14. PMID: 25256540.

Lanham NS, Bockelman KJ, McCriskin BJ. Telemedicine and Orthopaedic Surgery: The COVID-19 Pandemic and Our New Normal. JBJS Rev. 2020 Jul;8(7):e2000083. doi: 10.2106/JBJS.RVW.20.00083. PMID: 32759613.

Ohannessian R, Duong TA, Odone A. Global Telemedicine implementation and integrationwithin health systems to fight the COVID-19 pandemic: a call to action. JMIR Public Health Surveill. 2020 Apr 2;6(2): e18810.

Lakshin, G., Banek, S., Keese, D., Rolle, U., & Schmedding, A. (2021). Telemedicine in the pediatric surgery in Germany during the COVID-19 pandemic. Pediatric Surgery International, 37(3), 389–395. doi:10.1007/s00383-020-04822-w

Harting, M. T., Wheeler, A., Ponsky, T., Nwomeh, B., Snyder, C. L., Bruns, N. E., … Shah, S. R. (2018). Telemedicine in pediatric surgery. Journal of Pediatric Surgery. doi:10.1016/j.jpedsurg.2018.04.038

Cummins P, Bruining N. Robot-assisted telestenting: brightening the light of science. EuroIntervention. 2017 Jan 20;12(13):1561-1563. doi: 10.4244/EIJV12I13A256. PMID: 28105990.

Eadie LH, Seifalian AM, Davidson BR. Telemedicine in surgery. Br J Surg. 2003 Jun;90(6):647-58. doi: 10.1002/bjs.4168. PMID: 12808611.

Falk V, Diegler A, Walther T, Autschbach R, Mohr FW. Developments in robotic cardiac surgery. Curr Opin Cardiol. 2000 Nov;15(6):378-87. doi: 10.1097/00001573-200011000-00002. PMID: 11198619.

Beals DA, Fletcher JR. Telemedicine and pediatric surgery. Semin Pediatr Surg. 2000 Feb;9(1):40-7. doi: 10.1016/s1055-8586(00)70007-2. PMID: 10688385.

Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235:487-92.

Schwamm LH, Chumbler N, Brown E, et al. Recommendations for the implementation of telehealth in cardiovascular and stroke care. A policy statement from the American Heart Association. Circulation. 2017;135:e24-e44.

Patel TM, Shah SC, Pancholy SB. Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience. EClinicalMedicine. 2019;14:53-58.

Weisz G, Metzger DC, Caputo RP, Delgado JA, Marshall JJ, Vetrovec GW, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically- Enhanced Coronary Intervention) study. J Am Coll Cardiol. 2013;61(15):1596–600.

Klaassen, B., van Beijnum, B. J. F., & Hermens, H. J. (2016). Usability in telemedicine systems—A literature survey. International Journal of Medical Informatics, 93, 57–69. doi:10.1016/j.ijmedinf.2016.06.004

35. Xia, S.-B., & Lu, Q.-S. (2021). Development status of telesurgery robotic system. Chinese Journal of Traumatology, 24(3), 144–147. doi:10.1016/j.cjtee.2021.03.001

36. Xu, T., Pujara, S., Sutton, S., & Rhee, M. (2018). Telemedicine in the Management of Type 1 Diabetes. Preventing Chronic Disease, 15. doi:10.5888/pcd15.170168

37. Jin, M. L., Brown, M. M., Dhir, P., Nirmalan, A., & Edwards, P. A. (2021). Telemedicine, Telementoring, and Telesurgery for Surgical Practices. Current Problems in Surgery, 100986. doi:10.1016/j.cpsurg.2021.100986

38. Mohan A, Wara UU, Arshad Shaikh MT, Rahman RM, Zaidi ZA. Telesurgery and Robotics: An Improved and Efficient Era. Cureus. 2021 Mar 26;13(3):e14124. doi: 10.7759/cureus.14124. PMID: 33927932; PMCID: PMC8075759.

Opublikowane

5 marca 2023