Egzoszkielet - nowoczesna forma rehabilitacji dolnego aparatu ruchu
Słowa kluczowe:
Rehabilitacja, Egzoszkielet, Paraplegia, NiepełnosprawnośćStreszczenie
Wraz z rozwojem cywilizacji, coraz większym utrudnieniem staje się niepełnosprawność ruchowa. Na zwiększający się odsetek ludzi z niedowładem lub porażeniem dolnych kończyn, składają się różne czynniki, np. coraz większy procent ogólnoświatowej społeczności, stanowią starsze osoby, u których wraz z wiekiem, pojawiają się znaczne utrudnienia w poruszaniu się, wynikające z chorób towarzyszących. Dodatkowo, rozwój transportu oraz przemysłu, koreluje z powiększającą się ilością wypadków, w wyniku których nabywane są wyżej wymienione niepełnosprawności. Przyczyniają się one nie tylko do problemów psychosocjologicznych, ale również stanowi obciążenie finansowe systemu opieki zdrowotnej, wynikające z długotrwałego i pracochłonnego procesu rehabilitacji tych osób. Pomóc w tym mogą robotyczne ortezy, które przy wykorzystaniu nowoczesnych technologii oraz sztucznej inteligencji, są w stanie przyśpieszyć oraz usprawnić ten proces, jednocześnie odciążając w tym fizjoterapeutę. Artykuł ten prezentuje, zagadnienia związane budową egzoszkieletów, wykorzystaniem ich w praktyce klinicznej, oraz przegląd egzoszkieletów wybranych firm i ogólny opis budowy każdego z nich.
Bibliografia
Wang, T., Zhang, B., Liu, C., Liu, T., Han, Y., Wang, S., Ferreira, J. P., Dong, W., & Zhang, X. (2022). A Review on the Rehabilitation Exoskeletons for the Lower Limbs of the Elderly and the Disabled. W Electronics (T. 11, Issue 3, s. 388). MDPI AG. https://doi.org/10.3390/electronics11030388
Ekelem, A., & Goldfarb, M. (2018). Supplemental Stimulation Improves Swing Phase Kinematics During Exoskeleton Assisted Gait of SCI Subjects With Severe Muscle Spasticity. W Frontiers in Neuroscience (T. 12). Frontiers Media SA. https://doi.org/10.3389/fnins.2018.00374
Rondina, J. M., Park, C., & Ward, N. S. (2017). Brain regions important for recovery after severe post-stroke upper limb paresis. W Journal of Neurology, Neurosurgery & Psychiatry (T. 88, Issue 9, s. 737–743). BMJ. https://doi.org/10.1136/jnnp-2016-315030
Wang, C., Wu, X., Wang, Z., & Ma, Y. (2018). Implementation of a Brain-Computer Interface on a Lower-Limb Exoskeleton. W IEEE Access (T. 6, s. 38524–38534). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/access.2018.2853628
Vinoj, P. G., Jacob, S., Menon, V. G., Rajesh, S., & Khosravi, M. R. (2019). Brain-Controlled Adaptive Lower Limb Exoskeleton for Rehabilitation of Post-Stroke Paralyzed. W IEEE Access (T. 7, s. 132628–132648). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/access.2019.2921375
Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). W IEEE/ASME Transactions on Mechatronics (T. 11, Issue 2, s. 128–138). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tmech.2006.871087
Chu, A., Kazerooni, H., & Zoss, A. (b.d.). On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). W Proceedings of the 2005 IEEE International Conference on Robotics and Automation. 2005 IEEE International Conference on Robotics and Automation. IEEE. https://doi.org/10.1109/robot.2005.1570789
Guizzo, E., & Goldstein, H. (2005). The rise of the body bots [robotic exoskeletons. W IEEE Spectrum (T. 42, Issue 10, s. 50–56). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/mspec.2005.1515961
Hemami, H., & Dariush, B. (2016). Neural and Spinal Modules in Implementation of a Simple Ballistic Movement. W Journal of Software Engineering and Applications (T. 09, Issue 07, s. 326–345). Scientific Research Publishing, Inc. https://doi.org/10.4236/jsea.2016.97023
Kazerooni, H. (2005). Exoskeletons for human power augmentation. W 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. https://doi.org/10.1109/iros.2005.1545451
Beil, J., Perner, G., & Asfour, T. (2015). Design and control of the lower limb exoskeleton KIT-EXO-1. W 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE. https://doi.org/10.1109/icorr.2015.7281186
Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., Millán, J. del R., Riener, R., Vallery, H., & Gassert, R. (2015). Control strategies for active lower extremity prosthetics and orthotics: a review. W Journal of NeuroEngineering and Rehabilitation (T. 12, Issue 1, s. 1). Springer Science and Business Media LLC. https://doi.org/10.1186/1743-0003-12-1
Kilicarslan, A., Prasad, S., Grossman, R. G., & Contreras-Vidal, J. L. (2013). High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. W 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. https://doi.org/10.1109/embc.2013.6610821
Collins, S. H., Wiggin, M. B., & Sawicki, G. S. (2015). Reducing the energy cost of human walking using an unpowered exoskeleton. W Nature (T. 522, Issue 7555, s. 212–215). Springer Science and Business Media LLC. https://doi.org/10.1038/nature14288
van den Bogert, A. J. (2003). Exotendons for assistance of human locomotion. W BioMedical Engineering OnLine (T. 2, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/1475-925x-2-17
Yan, T., Cempini, M., Oddo, C. M., & Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons. W Robotics and Autonomous Systems (T. 64, s. 120–136). Elsevier BV. https://doi.org/10.1016/j.robot.2014.09.032
Hussain, F., Goecke, R., & Mohammadian, M. (2021). Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. W Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine (T. 235, Issue 12, s. 1375–1385). SAGE Publications. https://doi.org/10.1177/09544119211032010
Bogue, R. (2015). Robotic exoskeletons: a review of recent progress. W Industrial Robot: An International Journal (T. 42, Issue 1, s. 5–10). Emerald. https://doi.org/10.1108/ir-08-2014-0379
ReWalkTM Personal 6.0 - ReWalk – More Than Walking. (2013). ReWalk – More than Walking. https://rewalk.com/rewalk-personal-3/
Talaty, M., Esquenazi, A., & Briceno, J. E. (2013). Differentiating ability in users of the ReWalk<sup>TM</sup> powered exoskeleton: An analysis of walking kinematics. W 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR 2013). IEEE. https://doi.org/10.1109/icorr.2013.6650469
Gardner, A. D., Potgieter, J., & Noble, F. K. (2017). A review of commercially available exoskeletons’ capabilities. W 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE. https://doi.org/10.1109/m2vip.2017.8211470
Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2015). Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. W Disability and Rehabilitation: Assistive Technology (T. 11, Issue 7, s. 535–547). Informa UK Limited. https://doi.org/10.3109/17483107.2015.1080766
Zeilig, G., Weingarden, H., Zwecker, M., Dudkiewicz, I., Bloch, A., & Esquenazi, A. (2012). Safety and tolerance of the ReWalk™exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. W The Journal of Spinal Cord Medicine (T. 35, Issue 2, s. 96–101). Informa UK Limited. https://doi.org/10.1179/2045772312y.0000000003
Chen, B., Ma, H., Qin, L.-Y., Gao, F., Chan, K.-M., Law, S.-W., Qin, L., & Liao, W.-H. (2016). Recent developments and challenges of lower extremity exoskeletons. W Journal of Orthopaedic Translation (T. 5, s. 26–37). Elsevier BV. https://doi.org/10.1016/j.jot.2015.09.007
EksoNR - The Next Step in NeuroRehabilitation. (n.d.). Ekso Bionics. https://eksobionics.com/eksonr/
Read, E., Woolsey, C., McGibbon, C. A., & O’Connell, C. (2020). Physiotherapists’ Experiences Using the Ekso Bionic Exoskeleton with Patients in a Neurological Rehabilitation Hospital: A Qualitative Study. W Rehabilitation Research and Practice (T. 2020, s. 1–8). Hindawi Limited. https://doi.org/10.1155/2020/2939573
Indego | Powering People Forward. (n.d.). Www.indego.com. https://www.indego.com/indego/us/en/home
Quintero, H. A., Farris, R. J., & Goldfarb, M. (2012). A Method for the Autonomous Control of Lower Limb Exoskeletons for Persons With Paraplegia. W Journal of Medical Devices (T. 6, Issue 4). ASME International. https://doi.org/10.1115/1.4007181
Farris, R. J., Quintero, H. A., Murray, S. A., Ha, K. H., Hartigan, C., & Goldfarb, M. (2014). A Preliminary Assessment of Legged Mobility Provided by a Lower Limb Exoskeleton for Persons With Paraplegia. W IEEE Transactions on Neural Systems and Rehabilitation Engineering (T. 22, Issue 3, s. 482–490). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tnsre.2013.2268320
Tita, B. (n.d.). Parker Hannifin’s Robotic Exoskeleton Gets FDA OK for Personal Use. WSJ. https://www.wsj.com/articles/parker-hannifins-robotic-exoskeleton-gets-fda-ok-for-personal-use-1457624461
Sankai, Y. (2010). HAL: Hybrid Assistive Limb Based on Cybernics. W Springer Tracts in Advanced Robotics (s. 25–34). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_3
CYBERDYNE. (n.d.). Www.cyberdyne.jp. https://www.cyberdyne.jp/english/products/LowerLimb_medical.html
Tsukahara, A., Hasegawa, Y., & Sankai, Y. (2009). Standing-up motion support for paraplegic patient with Robot Suit HAL. W 2009 IEEE International Conference on Rehabilitation Robotics. the Community (ICORR). IEEE. https://doi.org/10.1109/icorr.2009.5209567
HAL Lower Limb. (2016, September 2). Exoskeleton Report. https://exoskeletonreport.com/product/hal-lower-limb/
HAL - ROBOTS: Your Guide to the World of Robotics. (n.d.). Robots.ieee.org. https://robots.ieee.org/robots/hal/
Product Information. (n.d.). Rex Bionics. https://www.rexbionics.com/product-information/
Barbareschi, G., Richards, R., Thornton, M., Carlson, T., & Holloway, C. (2015). Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human. W 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. https://doi.org/10.1109/embc.2015.7319937
X1 Mina Exoskeleton. (n.d.). IHMC Robotics Lab. https://robots.ihmc.us/x1-mina-exoskeleton
Neuhaus, P. D., Noorden, J. H., Craig, T. J., Torres, T., Kirschbaum, J., & Pratt, J. E. (2011). Design and evaluation of Mina: A robotic orthosis for paraplegics. W 2011 IEEE International Conference on Rehabilitation Robotics. 2011 IEEE 12th International Conference on Rehabilitation Robotics: Reaching Users & the Community (ICORR 2011). IEEE. https://doi.org/10.1109/icorr.2011.5975468
Raj, A. K., Neuhaus, P. D., Moucheboeuf, A. M., Noorden, J. H., & Lecoutre, D. V. (2011). Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance. W Journal of Robotics (T. 2011, s. 1–8). Hindawi Limited. https://doi.org/10.1155/2011/284352
How Much Does an Exoskeleton Cost? (n.d.). Cost Charts. https://costcharts.com/exoskeleton/
Zapowiedzi
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.