Wybrane algorytmy uczenia płytkiego w kontekście zastosowania w medycynie

Autorzy

Marcin Rojek
Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki
Michał Azierski
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny

Słowa kluczowe:

sztuczna inteligencja, uczenie maszynowe, medycyna, modele predykcyjne

Streszczenie

Celem pracy był przegląd i analiza wybranych zastosowań algorytmów płytkiego uczenia maszynowego. Mimo iż większość algorytmów została opracowana w drugiej połowie XX wieku, to dopiero postęp w mocy obliczeniowej maszyn umożliwił wykorzystanie ich potencjału w rozwoju modeli. W pracy analizujemy wybrane algorytmy uczenia płytkiego z dziedzin regresji, regresji logistycznej, klasyfikacji i grupowania, wraz z przytoczeniem prac z zakresu medycyny wykorzystujących je do analizy danych.

Bibliografia

Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electronic Markets. 2021;31. doi:https://doi.org/10.1007/s12525-021-00475-2

Conover WJ, Iman RL. Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics. The American Statistician. 1981;35(3):124. doi:https://doi.org/10.2307/2683975

SIATKI-WHO-OLA-i-OLAF. Dzieci Zdrowo Odżywione. Accessed May 2, 2023. https://www.dziecizdrowoodzywione.pl

Kamińska AM. Data science i uczenie maszynowe / Marcin Szeliga. rebususedupl. Published online 2018. Accessed May 2, 2023. https://rebus.us.edu.pl/handle/20.500.12128/7565

Stulp F, Sigaud O. Many regression algorithms, one unified model: A review. Neural Networks. 2015;69:60-79. doi:https://doi.org/10.1016/j.neunet.2015.05.005

Regresja logistyczna. www.mp.pl. Accessed May 2, 2023. https://www.mp.pl/artykuly/11813

Multinomial Logistic Regression | Stata Data Analysis Examples. stats.oarc.ucla.edu. https://stats.oarc.ucla.edu/stata/dae/multinomiallogistic-regression/

Kwak C, Clayton-Matthews A. Multinomial Logistic Regression. Nursing Research. 2002;51(6):404-410. https://journals.lww.com/nursingresearchonline/Abstract/2002/11000/Multinomial_Logistic_Regression.9.aspx

Regresja porządkowa. www.ibm.com. Accessed May 2, 2023. https://www.ibm.com/docs/pl/spss-statistics/27.0.0?topic=features-ordinal-regression

Classifier comparison. scikit-learn. https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Everitt B, Landau S, Leese M, Stahl D. WILEY SERIES in PROBABILITY and STATISTICS Cluster Analysis 5th Edition. https://cicerocq.files.wordpress.com/2019/05/cluster-analysis_5ed_everitt.pdf

3. Clustering — scikit-learn 0.20.3 documentation. Scikit-learn.org. Published 2010. https://scikit-learn.org/stable/modules/clustering.html

Box P, Van Der Maaten L, Postma E, Van Den Herik J. Tilburg Centre for Creative Computing Dimensionality Reduction: A Comparative Review Dimensionality Reduction: A Comparative Review.; 2009. https://members.loria.fr/moberger/Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf

5. Unsupervised dimensionality reduction. scikit-learn. Accessed May 2, 2023. https://scikit-learn.org/stable/modules/unsupervised_reduction.html

Marzi C, Marfisi D, Barucci A, et al. Collinearity and Dimensionality Reduction in Radiomics: Effect of Preprocessing Parameters in Hypertrophic Cardiomyopathy Magnetic Resonance T1 and T2 Mapping. Bioengineering. 2023;10(1):80-80. doi:https://doi.org/10.3390/bioengineering10010080

Probability PCA | TensorFlow Probability. TensorFlow. Accessed May 2, 2023. https://www.tensorflow.org/probability/examples/Probabilistic_PCA?hl

Cichocki A, Rafajłowicz E, eds. Nieujemna faktoryzacjamacierzy i tensorówZastosowanie do klasyfikacjii przetwarzania sygnałów.

Górniak J. Analiza czynnikowa i analiza głównych składowych. kbosuedu. Published online 1998. Accessed May 2, 2023. https://kb.osu.edu/handle/1811/69494

Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD international conference on Management of data - SIGMOD ’93. Published online 1993. doi:https://doi.org/10.1145/170035.170072

Hegland M. THE APRIORI ALGORITHM – A TUTORIAL. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore. Published online October 2007:209-262. doi:https://doi.org/10.1142/9789812709066_0006

Borgelt C. An implementation of the FP-growth algorithm. Proceedings of the 1st international workshop on open source data mining frequent pattern mining implementations - OSDM ’05. Published online 2005. doi:https://doi.org/10.1145/1133905.1133907

Schmidt-Thieme L. Algorithmic Features of Eclat. Accessed May 2, 2023. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e5fa87f03af7b4abbbc6acb2085fd8d41ad01db3

Zaki MJ. Machine Learning.2001;42(1/2):31-60.doi:https://doi.org/10.1023/a:1007652502315

Li J. Study on the Clinical Characteristics and Treatment of Obstetric Hypertension with Sequence Pattern Mining Algorithm. Nagaraj B, ed. Journal of Healthcare Engineering. 2021;2021:1-7. doi:https://doi.org/10.1155/2021/1072446

Hu YH, Yu SC, Qi X, Zheng WJ, Wang QQ, Yao HY. [An overview of multiple linear regression model and its application]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]. 2019;53(6):653-656. doi:https://doi.org/10.3760/cma.j.issn.0253-9624.2019.06.021

Bangdiwala SI. Regression: multiple linear. International Journal of Injury Control and Safety Promotion. 2018;25(2):232-236. doi:https://doi.org/10.1080/17457300.2018.1452336

Ghazali FMM, W Ahmad WMA, Srivastava KC, et al. A Study of Creatinine Level among Patients with Dyslipidemia and Type 2 Diabetes Mellitus using Multilayer Perceptron and Multiple Linear Regression. Journal of Pharmacy & Bioallied Sciences. 2021;13(Suppl 1):S795-S800. doi:https://doi.org/10.4103/jpbs.JPBS_778_20

Stoltzfus JC. Logistic Regression: A Brief Primer. Academic Emergency Medicine. 2011;18(10):1099-1104. doi:https://doi.org/10.1111/j.1553-2712.2011.01185.x

Li Y, Lu F, Yin Y. Applying logistic LASSO regression for the diagnosis of atypical Crohn’s disease. Scientific Reports. 2022;12(1). doi:https://doi.org/10.1038/s41598-022-15609-5

Karta ryzyka SCORE - Narodowy Instytut Kardiologii. www.ikard.pl. Accessed May 2, 2023. https://www.ikard.pl/karta-ryzyka-score.html

Zhang L, Li C, Peng D, et al. Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022;264:120300. doi:https://doi.org/10.1016/j.saa.2021.120300

Wang H, Hu D. Comparison of SVM and LS-SVM for Regression. IEEE Xplore. doi:https://doi.org/10.1109/ICNNB.2005.1614615

Mathur A, Foody GM. Multiclass and Binary SVM Classification: Implications for Training and Classification Users. IEEE Geoscience and Remote Sensing Letters. 2008;5(2):241-245. doi:https://doi.org/10.1109/lgrs.2008.915597

Ahlqvist, E., Storm, P., Käräjämäki, A., Martinell, M., Dorkhan, M., Carlsson, A., ... & Groop, L. (2018). Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. The Lancet Diabetes & Endocrinology, 6(5), 361-369.

Scikit-learn. sklearn.cluster.KMeans — scikit-learn 0.21.3 documentation. Scikit-learn.org. Published 2019. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Scheffler A, Telesca D, Li Q, et al. Hybrid principal components analysis for region-referenced longitudinal functional EEG data. Biostatistics. 2020;21(1):139-157. doi:https://doi.org/10.1093/biostatistics/kxy034

Sklearn.decomposition.PCA — scikit-learn 0.20.3 documentation. Scikit-learn.org. Published 2009. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Chen W, Yang J, Wang H, Shi Y, Hall MB, Li G. Discovering Associations of Adverse Events with Pharmacotherapy in Patients with Non-Small Cell Lung Cancer Using Modified Apriori Algorithm. BioMed Research International. 2018;2018:1-10. doi:https://doi.org/10.1155/2018/1245616

Al-Maolegi M, Arkok B. An Improved Apriori Algorithm for Association Rules. arXiv:14033948 [cs]. Published online March 16, 2014. https://arxiv.org/abs/1403.3948

Zapowiedzi

22 sierpnia 2023