W poszukiwaniu skutecznego leku na AMD - przegląd nowoczesnych terapii

Autorzy

Wiktoria Sokołowska - Studenckie Koło Naukowe im. Prof. Zbigniewa Religi przy Katedrze Biofizyki, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Natalia Zawronek; Barbara Sławińska; Karolina Kruk; Maja Kruplewicz; Wojciech Jaworski

Słowa kluczowe:

zwyrodnienie plamki żółtej związane z wiekiem, suche AMD, mokre AMD

Streszczenie

Starcze zwyrodnienie plamki żółtej (ang. Aged-related Macular Degeneration AMD) jest przewlekłą, postępującą chorobą oka. Jest jedna z głównych przyczyn nieodwracalnej utraty ostrości widzenia centralnego, a także ślepoty. Jej patogeneza prawdopodobnie jest wieloczynnikowa. Stosowane dotychczas metody leczenia są niewystarczająco skuteczne, ze względu na złożoność interakcji czynników metabolicznych, funkcjonalnych, genetycznych i środowiskowych. Główne zmiany będące przyczyną choroby obserwuje się w nabłonku barwnikowym siatkówki (ang. retinal pigment epithelium RPE), fotoreceptorach,  błonie Brucha i w naczyniówce gałki ocznej. W tym rozdziale przedstawiono pokrótce aktualny postęp oraz perspektywy przyszłych strategii terapeutycznych  zarówno w leczeniu mokrego i suchego AMD. Terapia anty-VEGF, przeciwciała bispecyficzne, leki biopodobne, terapia genowa, PDS - the Port Delivery System oraz nanosekundowa terapia laserowa to tylko część proponowanych przez badaczy rozwiązań w poprawie ostrości wzroku u chorych na AMD. Profilaktyka oraz leczenie AMD nadal są bardzo ograniczone, szczególnie w postaci suchej AMD,  dlatego stale poszukuje się nowych rozwiązań terapeutycznych. 

Bibliografia

R Sparrow, J., Hicks, D., & P Hamel, C. (2010). The retinal pigment epithelium in health and disease. Current molecular medicine, 10(9), 802-823.

Pennington, K. L., & DeAngelis, M. M. (2016). Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors. Eye and vision, 3(1), 1-20.

Ferris, F. L., Fine, S. L., & Hyman, L. (1984). Age-related macular degeneration and blindness due to neovascular maculopathy. Archives of ophthalmology, 102(11), 1640-1642.

Deng, Y., Qiao, L., Du, M., Qu, C., Wan, L., Li, J., & Huang, L. (2022). Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes & diseases, 9(1), 62-79.

Liew, G., Joachim, N., Mitchell, P., Burlutsky, G., & Wang, J. J. (2016). Validating the AREDS simplified severity scale of age-related macular degeneration with 5-and 10-year incident data in a population-based sample. Ophthalmology, 123(9), 1874-1878.

Fine, S. L., Berger, J. W., Maguire, M. G., & Ho, A. C. (2000). Age-related macular degeneration. New England Journal of Medicine, 342(7), 483-492.

Klein R, Peto T, Bird A, Vannewkirk MR: The epidemiology of age-related macular degeneration. Am J Ophthalmol, 2004, 137, 486–495

Di Carlo, E., & Augustin, A. J. (2021). Prevention of the onset of age-related macular degeneration. Journal of Clinical Medicine, 10(15), 3297.

Del Priore, L. V., Kuo, Y. H., & Tezel, T. H. (2002). Age-related changes in human RPE cell density and apoptosis proportion in situ. Investigative ophthalmology & visual science, 43(10), 3312–3318.

Ciulla, T. A. (2001). Evolving pathophysiological paradigms for age related macular degeneration. British Journal of Ophthalmology, 85(5), 510-512.

van Lookeren Campagne, M., LeCouter, J., Yaspan, B. L., & Ye, W. (2014). Mechanisms of age‐related macular degeneration and therapeutic opportunities. The Journal of pathology, 232(2), 151-164.

Sparrow, J. R., Fishkin, N., Zhou, J., Cai, B., Jang, Y. P., Krane, S., ... & Nakanishi, K. (2003). A2E, a byproduct of the visual cycle. Vision research, 43(28), 2983-2990.

Zhou, J., Jang, Y. P., Kim, S. R., & Sparrow, J. R. (2006). Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proceedings of the National Academy of Sciences, 103(44), 16182-16187.

Gess, A. J., Fung, A. E., & Rodriguez, J. G. (2011, May). Imaging in neovascular age-related macular degeneration. In Seminars in ophthalmology (Vol. 26, No. 3, pp. 225-233). Taylor & Francis.

https://kcp.pl/artykuly/amd-a-wzrok/

Stahl, A. (2020). The diagnosis and treatment of age-related macular degeneration. Deutsches Ärzteblatt International, 117(29-30), 513.

Gesellschaft, D. O. (2017). Quality assurance of optical coherence tomography for diagnostics of the fundus: Positional statement of the BVA, DOG and RG. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft, 114(7), 617-624.

Schmidt-Erfurth, U., Klimscha, S., Waldstein, S. M., & Bogunović, H. (2017). A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye, 31(1), 26-44.

Manjunath, V., Goren, J., Fujimoto, J. G., & Duker, J. S. (2011). Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. American journal of ophthalmology, 152(4), 663-668.

Age-Related Eye Disease Study Research Group. (2001). A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Archives of ophthalmology, 119(10), 1417-1436.

Schargus, M., & Frings, A. (2020). Issues with intravitreal administration of anti-VEGF drugs. Clinical Ophthalmology, 897-904.

Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307.

Mitchell, S. L., Uppal, K., Williamson, S. M., Liu, K., Burgess, L. G., Tran, V., Umfress, A. C., Jarrell, K. L., Cooke Bailey, J. N., Agarwal, A., Pericak-Vance, M., Haines, J. L., Scott, W. K., Jones, D. P., & Brantley, M. A., Jr (2018). The Carnitine Shuttle Pathway is Altered in Patients With Neovascular Age-Related Macular Degeneration. Investigative ophthalmology & visual science, 59(12), 4978–4985.

VEGF Inhibition Study in Ocular Neovascularization (V.I.S.I.O.N.) Clinical Trial Group, D'Amico, D. J., Masonson, H. N., Patel, M., Adamis, A. P., Cunningham, E. T., Jr, Guyer, D. R., & Katz, B. (2006). Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. Ophthalmology, 113(6), 992–1001.e6.

Rosenfeld, P. J., Brown, D. M., Heier, J. S., Boyer, D. S., Kaiser, P. K., Chung, C. Y., Kim, R. Y., & MARINA Study Group (2006). Ranibizumab for neovascular age-related macular degeneration. The New England journal of medicine, 355(14), 1419–1431.

Heier, J. S., Brown, D. M., Chong, V., Korobelnik, J. F., Kaiser, P. K., Nguyen, Q. D., Kirchhof, B., Ho, A., Ogura, Y., Yancopoulos, G. D., Stahl, N., Vitti, R., Berliner, A. J., Soo, Y., Anderesi, M., Groetzbach, G., Sommerauer, B., Sandbrink, R., Simader, C., Schmidt-Erfurth, U., … VIEW 1 and VIEW 2 Study Groups (2012). Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology, 119(12), 2537–2548.

Al-Khersan, H., Hussain, R. M., Ciulla, T. A., & Dugel, P. U. (2019). Innovative therapies for neovascular age-related macular degeneration. Expert opinion on pharmacotherapy, 20(15), 1879–1891.

Dugel, P. U., Singh, R. P., Koh, A., Ogura, Y., Weissgerber, G., Gedif, K., ... & Holz, F. G. (2021). HAWK and HARRIER: ninety-six-week outcomes from the phase 3 trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology, 128(1), 89-99.

Nicolò, M., Ferro Desideri, L., Vagge, A., & Traverso, C. E. (2021). Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert opinion on investigational drugs, 30(3), 193–200.

Yang, S., Li, T., Jia, H., Gao, M., Li, Y., Wan, X., Huang, Z., Li, M., Zhai, Y., Li, X., Yang, X., Wang, T., Liang, J., Gu, Q., Luo, X., Qian, L., Lu, S., Liu, J., Song, Y., Wang, F., … Yu, D. (2022). Targeting C3b/C4b and VEGF with a bispecific fusion protein optimized for neovascular age-related macular degeneration therapy. Science translational medicine, 14(647), eabj2177.

https://www.medchemexpress.com/efdamrofusp-alfa.html

Sharma, A., Reddy, P., Kuppermann, B. D., Bandello, F., & Lowenstein, A. (2018). Biosimilars in ophthalmology: "Is there a big change on the horizon?". Clinical ophthalmology (Auckland, N.Z.), 12, 2137–2143.

Biogen. FDA approves Samsung Bioepis and Biogen’s BYOOVIZTM (SB11), LUCENTIS® biosimilar (ranibizumab-nuna). https://investors.biogen.com/news-releases/news-release-details/fda-approves-samsung-bioepis-and-biogens-byooviztm-sb11

https://clinicaltrials.gov/ct2/show/NCT04522167

https://clinicaltrials.gov/ct2/show/NCT04270747

Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J. J., Rosenberg, S. A., Klein, H., Berger, M., Mullen, C. A., Ramsey, W. J., Muul, L., Morgan, R. A., & Anderson, W. F. (1995). T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science (New York, N.Y.), 270(5235), 475–480.

Khanani, A. M., Thomas, M. J., Aziz, A. A., Weng, C. Y., Danzig, C. J., Yiu, G., Kiss, S., Waheed, N. K., & Kaiser, P. K. (2022). Review of gene therapies for age-related macular degeneration. Eye (London, England), 36(2), 303–311

Naso, M. F., Tomkowicz, B., Perry, W. L., 3rd, & Strohl, W. R. (2017). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 31(4), 317–334.

Bessis, N., GarciaCozar, F. J., & Boissier, M. C. (2004). Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene therapy, 11 Suppl 1, S10–S17.

Gelfman, C. M., Grishanin, R., Bender, K. O., Nguyen, A., Greengard, J., Sharma, P., Nieves, J., Kiss, S., & Gasmi, M. (2021). Comprehensive Preclinical Assessment of ADVM-022, an Intravitreal Anti-VEGF Gene Therapy for the Treatment of Neovascular AMD and Diabetic Macular Edema. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics, 37(3), 181–190.

Kiss, S., Bender, K. O., Grishanin, R. N., Hanna, K. M., Nieves, J. D., Sharma, P., ... & Gasmi, M. (2021). Long-term safety evaluation of continuous intraocular delivery of aflibercept by the intravitreal gene therapy candidate ADVM-022 in nonhuman primates. Translational vision science & technology, 10(1), 34-34.

Siddiqui, F., Aziz, A., & Khanani, A. M. (2020). Gene therapy for neovascular AMD. Retin. Physician, 17, 36-39.

Intravitreal AAVCAGsCD59 for Advanced Dry Age-related Macular Degeneration (AMD) With Geographic Atrophy (GA) ClinicalTrials.gov Identifier: NCT04358471

First in human study to evaluate the safety and efficacy of GT005 administered in subjects with dry AMD. ClinicalTrialsgov. NCT03846193; 2019.

https://clinicaltrials.gov/ct2/show/NCT01344993

Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., Hubschman, J. P., Davis, J. L., Heilwell, G., Spirn, M., Maguire, J., Gay, R., Bateman, J., Ostrick, R. M., Morris, D., Vincent, M., Anglade, E., Del Priore, L. V., & Lanza, R. (2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet (London, England), 385(9967), 509–516.

https://clinicaltrials.gov/ct2/show/NCT02127463

Bandello, F., Sacconi, R., Querques, L., Corbelli, E., Cicinelli, M. V., & Querques, G. (2017). Recent advances in the management of dry age-related macular degeneration: a review. F1000Research, 6.

Ralston Jr, P. G., Sloan, D., Waters-Honcu, D., Saigal, S., & Torkildsen, G. (2010). A pilot, open-label study of the safety of MC-1101 in both normal volunteers and patients with early nonexudative age-related macular degeneration. Investigative Ophthalmology & Visual Science, 51(13), 913-913.

https://clinicaltrials.gov/ct2/show/NCT00658619

ClinicalTrials.gov. Safety and efficacy of brimonidine intravitreal implant in patients with geographic atrophy due to age-related macular degeneration (AMD) ClinicalTrials.gov identifier: NCT00658619. Available from: https://clinicaltrials.gov/ct2/show/NCT00658619.

Khan, H., Aziz, A. A., Sulahria, H., Khan, H., Ahmed, A., Choudhry, N., Narayanan, R., Danzig, C., & Khanani, A. M. (2023). Emerging Treatment Options for Geographic Atrophy (GA) Secondary to Age-Related Macular Degeneration. Clinical ophthalmology (Auckland, N.Z.), 17, 321–327.

Cho, Y. K., Park, D. H., & Jeon, I. C. (2021). Medication Trends for Age-Related Macular Degeneration. International journal of molecular sciences, 22(21), 11837.

Gass, J. D. M. (1973). Drusen and disciform macular detachment and degeneration. Archives of Ophthalmology, 90(3), 206-217.

Wood, J. P., Plunkett, M., Previn, V., Chidlow, G., & Casson, R. J. (2011). Nanosecond pulse lasers for retinal applications. Lasers in surgery and medicine, 43(6), 499–510.

Schlottmann, P. G., Alezzandrini, A. A., Zas, M., Rodriguez, F. J., Luna, J. D., & Wu, L. (2017). New treatment modalities for neovascular age-related macular degeneration. The Asia-Pacific Journal of Ophthalmology, 6(6), 514-519.

Chen, E. R., & Kaiser, P. K. (2020). Therapeutic potential of the ranibizumab port delivery system in the treatment of AMD: evidence to date. Clinical Ophthalmology, 1349-1355.

Campochiaro, P. A., Marcus, D. M., Awh, C. C., Regillo, C., Adamis, A. P., Bantseev, V., Chiang, Y., Ehrlich, J. S., Erickson, S., Hanley, W. D., Horvath, J., Maass, K. F., Singh, N., Tang, F., & Barteselli, G. (2019). The Port Delivery System with Ranibizumab for Neovascular Age-Related Macular Degeneration: Results from the Randomized Phase 2 Ladder Clinical Trial. Ophthalmology, 126(8), 1141–1154.

Michels, S., Rosenfeld, P. J., Puliafito, C. A., Marcus, E. N., & Venkatraman, A. S. (2005). Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration: twelve-week results of an uncontrolled open-label clinical study. Ophthalmology, 112(6), 1035-1047.

Bantseev, V., Schuetz, C., Booler, H. S., Horvath, J., Hovaten, K., Erickson, S., ... & Barteselli, G. (2020). Evaluation of surgical factors affecting vitreous hemorrhage following port delivery system with ranibizumab implant insertion in a minipig model. Retina (Philadelphia, Pa.), 40(8), 1520.

https://clinicaltrials.gov/ct2/show/NCT03677934

https://www.roche.com/media/releases/med-cor-2021-10-22b

Kuppermann, B. D., Patel, S. S., Boyer, D. S., Augustin, A. J., Freeman, W. R., Kerr, K. J., ... & López, F. J. (2021). Phase 2 study of the safety and efficacy of brimonidine drug delivery system (Brimo DDS) generation 1 in patients with geographic atrophy secondary to age-related macular degeneration. Retina, 41(1), 144-155.

https://clinicaltrials.gov/ct2/show/NCT02087085

Freeman, W. R., Bandello, F., Souied, E. H., Guymer, R. H., Garg, S., Chen, F. K., ... & Lopez, F. J. (2019). Phase 2B study of brimonidine DDS: potential novel treatment for geographic atrophy. Investigative Ophthalmology & Visual Science, 60(9), 971-971.

Opublikowane

8 czerwca 2023