Risdiplam jako innowacja w leczeniu rdzeniowego zaniku mięśni
Słowa kluczowe:
SMA, rdzeniowy zanik mięśni, białko SMN, risdiplam, modyfikator splicingu mRNA SMN2Streszczenie
Rdzeniowy zanik mięśni (SMA) jest schorzeniem z rodzaju nerwowo-mięśniowych, charakteryzujący się degeneracją neuronów ruchowych rdzenia kręgowego. Jest to druga najczęstsza przyczyna śmierci niemowląt, występująca z częstością 1 na 6000-10000 żywych urodzeń. SMA spowodowane jest mutacją lub delecją w genie 5.q13 kodującym białko SMN. U chorych następuje utrata siły mięśniowej, ograniczenie funkcji motorycznych, problemy z oddychaniem, a w konsekwencji może prowadzić do śmierci. Risdiplam został zatwierdzony przez FDA w sierpniu 2020 roku. Jest on trzecim zaraz po Nursinersenie i onasemnogenie abeparwoweku zatwierdzonym lekiem przyczynowym, a jednocześnie pierwszym doustnym w terapii SMA. Jego działanie polega na modyfikacji splicingu mRNA SMN2, prowadząc do syntezy funkcjonalnego białka SMN, które jest odpowiedzialne za prawidłowe funkcjonowanie neuronów ruchowych. Trwają 4 badania kliniczne: FIREFISH, SUNFISH, JEWELFISH, RAINBOWFISH oceniające bezpieczeństwo, tolerancję, farmakokinetykę (PK), farmakodynamikę (PD) i efekt terapeutyczny risdiplamu. W trakcie trwania terapii wykazano znaczną poprawę funkcji motorycznych ocenianą na podstawie różnych skal oraz wzrost poziomu białka SMN we krwi. Pacjenci nie zgłaszali ostrych działań niepożądanych, które mogłyby przeważyć o rezygnacji z dalszego leczenia.
Rozdziały
-
Risdiplam jako innowacja w leczeniu rdzeniowego zaniku mięśni
Bibliografia
Munsat TL, Davies KE. International SMA Consortium Meeting (26–28 June 1992, Bonn, Germany). Neuromuscular Disorders. 1992;2(5-6):423-428. doi:10.1016/s0960-8966(06)80015-5
Mercuri E, Darras BT, Chiriboga CA, i in. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med. 2018;378(7):625-635. doi:10.1056/nejmoa1710504
.Dubowitz V. Ramblings in the history of spinal muscular atrophy. Neuromuscular Disorders. 2009;19(1):69-73. doi:10.1016/j.nmd.2008.10.004
Russman BS. Spinal Muscular Atrophy: Clinical Classification and Disease Heterogeneity. J Child Neurol. 2007;22(8):946-951. doi:10.1177/0883073807305673
Darras BT. Spinal Muscular Atrophies. Pediatric Clinics of North America. 2015;62(3):743-766. doi:10.1016/j.pcl.2015.03.010
Calucho M, Bernal S, Alías L, i in. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscular Disorders. 2018;28(3):208-215. doi:10.1016/j.nmd.2018.01.003
Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative Analyses of SMN1 and SMN2 Based on Real-Time LightCycler PCR: Fast and Highly Reliable Carrier Testing and Prediction of Severity of Spinal Muscular Atrophy. The American Journal of Human Genetics. 2002;70(2):358-368. doi:10.1086/338627
Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA. 1999;96(11):6307-6311. doi:10.1073/pnas.96.11.6307
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2017;1860(3):299-315. doi:10.1016/j.bbagrm.2016.12.008
Reilly A, Chehade L, Kothary R. Curing SMA: Are we there yet? Gene Ther. 2022;30(1-2):8-17. doi:10.1038/s41434-022-00349-y
Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat. 2000;15(3):228-237. doi:10.1002/(sici)1098-1004(200003)15:3<228::aid-humu3>3.0.co;2-9
D’Amico A, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6(1). doi:10.1186/1750-1172-6-71
Masson R, Mazurkiewicz-Bełdzińska M, Rose K, i in. Safety and efficacy of risdiplam in patients with type 1 spinal muscular atrophy (FIREFISH part 2): secondary analyses from an open-label trial. The Lancet Neurology. 2022;21(12):1110-1119. doi:10.1016/s1474-4422(22)00339-8
Claborn MK, Stevens DL, Walker CK, Gildon BL. Nusinersen: A Treatment for Spinal Muscular Atrophy. Ann Pharmacother. 2018;53(1):61-69. doi:10.1177/1060028018789956
Dhillon S. Risdiplam: First Approval. Drugs. 2020;80(17):1853-1858. doi:10.1007/s40265-020-01410-z
Schorling DC, Pechmann A, Kirschner J. Advances in Treatment of Spinal Muscular Atrophy – New Phenotypes, New Challenges, New Implications for Care. JND. 2020;7(1):1-13. doi:10.3233/jnd-190424
Paik J. Risdiplam: A Review in Spinal Muscular Atrophy. CNS Drugs. 2022;36(4):401-410. doi:10.1007/s40263-022-00910-8
Genentech Inc. Evrysdi™ (risdiplam): US prescribing information. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213535s000lbl.pdf. Accessed 24 Aug 2020
https://www.fsma.pl/leki/evrysdi/
Genentech Inc. Evrysdi® (risdiplam) for oral solution: US prescribing information. 2021. https://www.gene.com/.
Roche Registration GmbH. Evrysdi® (risdiplam) powder for oral solution: EU summary of product characteristics. 2021. https://www.ema.europa.eu/
Kakazu J, Walker NL, Babin KC, i in. Risdiplam for the Use of Spinal Muscular Atrophy. Orthopedic Reviews. 2021;13(2). doi:10.52965/001c.25579
Qiu J, Wu L, Qu R, i in. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front Cell Neurosci. 2022;16. doi:10.3389/fncel.2022.942976
Gidaro T, Servais L. Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps. Dev Med Child Neurol. 2018;61(1):19-24. doi:10.1111/dmcn.14027
Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a Critical Exon of Human Survival Motor Neuron Is Regulated by a Unique Silencer Element Located in the Last Intron. Mol Cell Biol. 2006;26(4):1333-1346. doi:10.1128/mcb.26.4.1333-1346.2006
Finkel RS, Chiriboga CA, Vajsar J, i in. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. The Lancet. 2016;388(10063):3017-3026. doi:10.1016/s0140-6736(16)31408-8
Li Q. Nusinersen as a Therapeutic Agent for Spinal Muscular Atrophy. Yonsei Med J. 2020;61(4):273. doi:10.3349/ymj.2020.61.4.273
Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice. The American Journal of Human Genetics. 2008;82(4):834-848. doi:10.1016/j.ajhg.2008.01.014
Chiriboga CA, Swoboda KJ, Darras BT, i in. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology. 2016;86(10):890-897. doi:10.1212/wnl.0000000000002445
Hua Y, Sahashi K, Hung G, i in. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010;24(15):1634-1644. doi:10.1101/gad.1941310
Hua Y, Sahashi K, Rigo F, i in. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 2011;478(7367):123-126. doi:10.1038/nature10485
Chiriboga CA, Swoboda KJ, Darras BT, i in. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology. 2016;86(10):890-897. doi:10.1212/wnl.0000000000002445
Valori CF, Ning K, Wyles M, i in. Systemic Delivery of scAAV9 Expressing SMN Prolongs Survival in a Model of Spinal Muscular Atrophy. Sci Transl Med. 2010;2(35). doi:10.1126/scitranslmed.3000830
Le TT, McGovern VL, Alwine IE, i in. Temporal requirement for high SMN expression in SMA mice. Human Molecular Genetics. 2011;20(18):3578-3591. doi:10.1093/hmg/ddr275
Hjartarson HT, Nathorst-Böös K, Sejersen T. Disease Modifying Therapies for the Management of Children with Spinal Muscular Atrophy (5q SMA): An Update on the Emerging Evidence. DDDT. 2022;Volume 16:1865-1883. doi:10.2147/dddt.s214174
Messina S, Sframeli M. New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. JCM. 2020;9(7):2222. doi:10.3390/jcm9072222
https://clinicaltrials.gov/ct2/show/NCT02122952
Mendell JR, Al-Zaidy S, Shell R, i in. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377(18):1713-1722. doi:10.1056/nejmoa1706198
Glanzman AM, Mazzone E, Main M, i in. The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): Test development and reliability. Neuromuscular Disorders. 2010;20(3):155-161. doi:10.1016/j.nmd.2009.11.014
Glanzman AM, McDermott MP, Montes J, i in. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatric Physical Therapy. 2011;23(4):322-326. doi:10.1097/pep.0b013e3182351f04
Al-Zaidy SA, Kolb SJ, Lowes L, i in. AVXS-101 (Onasemnogene Abeparvovec) for SMA1: Comparative Study with a Prospective Natural History Cohort. JND. 2019;6(3):307-317. doi:10.3233/jnd-190403
Lowes LP, Alfano LN, Arnold WD, i in. Impact of Age and Motor Function in a Phase 1/2A Study of Infants With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatric Neurology. 2019;98:39-45. doi:10.1016/j.pediatrneurol.2019.05.005
Press Release Novartis 2019. [(accessed on 30 May 2020)]; Available online: https://www.novartis.com/news/media-releases/avexis-receives-fda-approval-zolgensma-first-and-only-gene-therapy-pediatric-patients-spinal-muscular-atrophy-sma
Press Release Novartis 2020. [(accessed on 30 May 2020)]; Available online: https://www.globenewswire.com/news-release/2020/05/19/2035354/0/en/AveXis-receives-EC-approval-and-activates-Day-One-access-program-for-Zolgensma-the-only-gene-therapy-for-spinal-muscular-atrophy-SMA.html
Ratni H, Karp GM, Weetall M, i in. Specific Correction of Alternative Survival Motor Neuron 2 Splicing by Small Molecules: Discovery of a Potential Novel Medicine To Treat Spinal Muscular Atrophy. J Med Chem. 2016;59(13):6086-6100. doi:10.1021/acs.jmedchem.6b00459
Ratni H, Ebeling M, Baird J, i in. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem. 2018;61(15):6501-6517. doi:10.1021/acs.jmedchem.8b00741
Pinard E, Green L, Reutlinger M, i in. Discovery of a Novel Class of Survival Motor Neuron 2 Splicing Modifiers for the Treatment of Spinal Muscular Atrophy. J Med Chem. 2017;60(10):4444-4457. doi:10.1021/acs.jmedchem.7b00406
Kletzl H, Marquet A, Günther A, i in. The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscular Disorders. 2019;29(1):21-29. doi:10.1016/j.nmd.2018.10.001
Czech C, Tang W, Bugawan T, i in. Biomarker for Spinal Muscular Atrophy: Expression of SMN in Peripheral Blood of SMA Patients and Healthy Controls. Wishart TM, red. PLoS ONE. 2015;10(10):e0139950. doi:10.1371/journal.pone.0139950
https://clinicaltrials.gov/ct2/show/NCT02240355
Torroba B, Macabuag N, Haisma EM, i in. RNA-based drug discovery for spinal muscular atrophy: a story of small molecules and antisense oligonucleotides. Expert Opinion on Drug Discovery. 2022;18(2):181-192. doi:10.1080/17460441.2022.2149733
Wang X, Xu D, Pei X, i in. CircSKA3 Modulates FOXM1 to Facilitate Cell Proliferation, Migration, and Invasion While Confine Apoptosis in Medulloblastoma via miR-383-5p. CMAR. 2020;Volume 12:13415-13426. doi:10.2147/cmar.s272753
Wang X, Zhong H, Wang L, i in. MiR-29 Induces K562 Cell Apoptosis by Down-Regulating FoxM1. Med Sci Monit. 2015;21:3115-3120. doi:10.12659/msm.894554
Campagne S, Boigner S, Rüdisser S, i in. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol. 2019;15(12):1191-1198. doi:10.1038/s41589-019-0384-5
Sivaramakrishnan M, McCarthy KD, Campagne S, i in. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun. 2017;8(1). doi:10.1038/s41467-017-01559-4
Poirier A, Weetall M, Heinig K, i in. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect. 2018;6(6):e00447. doi:10.1002/prp2.447
Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational survival motor neuron 2 (SMN2) splicing modifier for spinal muscular atrophy (SMA). Expert Opinion on Investigational Drugs. 2022;31(5):451-461. doi:10.1080/13543784.2022.2056836
Genentech Inc. Evrysdi ® (risdiplam) oral solution: US regulatory information. 2021. https://www.gene.com/
Baranello G, Darras BT, Day JW, i in. Risdiplam in Type 1 Spinal Muscular Atrophy. N Engl J Med. 2021;384(10):915-923. doi:10.1056/nejmoa2009965
Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, i in. Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls. N Engl J Med. 2021;385(5):427-435. doi:10.1056/nejmoa2102047
FIREFISH Part 2: Efficacy and Safety of Risdiplam (RG7916) in Infants with Type 1 Spinal Muscular Atrophy (SMA) (1302), 2020
Oskoui M, Day JW, Deconinck N, i in. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol. Published online 3 luty 2023. doi:10.1007/s00415-023-11560-1
Muntoni F, Bertini E, Comi G, i in. Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromuscular Disorders. 2020;30(12):959-969. doi:10.1016/j.nmd.2020.10.008
Ferrantini G, Coratti G, Onesimo R, i in. Body mass index in type 2 spinal muscular atrophy: a longitudinal study. Eur J Pediatr. 2022;181(5):1923-1932. doi:10.1007/s00431-021-04325-3
Mercuri E, Deconinck N, Mazzone ES, i in. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. The Lancet Neurology. 2022;21(1):42-52. doi:10.1016/s1474-4422(21)00367-7
https://clinicaltrials.gov/ct2/show/NCT03032172
Chiriboga C, Bruno C, Duong T, i in. SMA - TREATMENT. Neuromuscular Disorders. 2021;31:S134-S135. doi:10.1016/j.nmd.2021.07.304
Chiriboga C, Bruno C, Duong T, i in. P.110 JEWELFISH: 24-month safety, pharmacodynamic and exploratory efficacy data in non-treatment-naïve patients with SMA receiving treatment with risdiplam https://www.neurologylive.com/view/sma-treatment-risdiplam-continues-show-safety-smn-depletion-2-year-jewelfish-data
https://clinicaltrials.gov/ct2/show/NCT03779334
Finkel R, Farrar M, Vlodavets D, i in. FP.24 RAINBOWFISH: Preliminary efficacy and safety data in risdiplam-treated infants with presymptomatic spinal muscular atrophy (SMA). Neuromuscular Disorders. 2022;32:S85-S86. doi:10.1016/j.nmd.2022.07.183
Current Summary of Product Characteristics Evrysdi, 2023
Opublikowane
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.