Risdiplam jako innowacja w leczeniu rdzeniowego zaniku mięśni

Autorzy

Zuzanna Złotnicka - 1. Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach; Sebastian Kościjański; Karolina Zięba; Justyna Zientek; Iga Kwas; Kacper Kuzan

Słowa kluczowe:

SMA, rdzeniowy zanik mięśni, białko SMN, risdiplam, modyfikator splicingu mRNA SMN2

Streszczenie

Rdzeniowy zanik mięśni (SMA) jest schorzeniem z rodzaju nerwowo-mięśniowych, charakteryzujący się degeneracją neuronów ruchowych rdzenia kręgowego. Jest to druga najczęstsza przyczyna śmierci niemowląt, występująca z częstością 1 na 6000-10000 żywych urodzeń. SMA spowodowane jest mutacją lub delecją w genie 5.q13 kodującym białko SMN. U chorych następuje utrata siły mięśniowej, ograniczenie funkcji motorycznych, problemy z oddychaniem, a w konsekwencji może prowadzić do śmierci. Risdiplam został zatwierdzony przez FDA w  sierpniu 2020 roku. Jest on trzecim zaraz po Nursinersenie i onasemnogenie abeparwoweku zatwierdzonym lekiem przyczynowym, a jednocześnie pierwszym doustnym w terapii SMA. Jego działanie polega na modyfikacji splicingu mRNA SMN2, prowadząc do syntezy funkcjonalnego białka SMN, które jest odpowiedzialne za prawidłowe funkcjonowanie neuronów ruchowych. Trwają 4 badania kliniczne: FIREFISH, SUNFISH, JEWELFISH, RAINBOWFISH oceniające bezpieczeństwo, tolerancję, farmakokinetykę (PK), farmakodynamikę (PD) i efekt terapeutyczny risdiplamu. W trakcie trwania terapii wykazano znaczną poprawę funkcji motorycznych ocenianą na podstawie różnych skal oraz wzrost poziomu białka SMN we krwi. Pacjenci nie zgłaszali ostrych działań niepożądanych, które mogłyby przeważyć o rezygnacji z dalszego leczenia.

 

 

 

Rozdziały

  • Risdiplam jako innowacja w leczeniu rdzeniowego zaniku mięśni
    Zuzanna Złotnicka, Sebastian Kościjański, Karolina Zięba, Justyna Zientek, Iga Kwas, Kacper Kuzan

Bibliografia

Munsat TL, Davies KE. International SMA Consortium Meeting (26–28 June 1992, Bonn, Germany). Neuromuscular Disorders. 1992;2(5-6):423-428. doi:10.1016/s0960-8966(06)80015-5

Mercuri E, Darras BT, Chiriboga CA, i in. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med. 2018;378(7):625-635. doi:10.1056/nejmoa1710504

.Dubowitz V. Ramblings in the history of spinal muscular atrophy. Neuromuscular Disorders. 2009;19(1):69-73. doi:10.1016/j.nmd.2008.10.004

Russman BS. Spinal Muscular Atrophy: Clinical Classification and Disease Heterogeneity. J Child Neurol. 2007;22(8):946-951. doi:10.1177/0883073807305673

Darras BT. Spinal Muscular Atrophies. Pediatric Clinics of North America. 2015;62(3):743-766. doi:10.1016/j.pcl.2015.03.010

Calucho M, Bernal S, Alías L, i in. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscular Disorders. 2018;28(3):208-215. doi:10.1016/j.nmd.2018.01.003

Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative Analyses of SMN1 and SMN2 Based on Real-Time LightCycler PCR: Fast and Highly Reliable Carrier Testing and Prediction of Severity of Spinal Muscular Atrophy. The American Journal of Human Genetics. 2002;70(2):358-368. doi:10.1086/338627

Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA. 1999;96(11):6307-6311. doi:10.1073/pnas.96.11.6307

Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2017;1860(3):299-315. doi:10.1016/j.bbagrm.2016.12.008

Reilly A, Chehade L, Kothary R. Curing SMA: Are we there yet? Gene Ther. 2022;30(1-2):8-17. doi:10.1038/s41434-022-00349-y

Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat. 2000;15(3):228-237. doi:10.1002/(sici)1098-1004(200003)15:3<228::aid-humu3>3.0.co;2-9

D’Amico A, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6(1). doi:10.1186/1750-1172-6-71

Masson R, Mazurkiewicz-Bełdzińska M, Rose K, i in. Safety and efficacy of risdiplam in patients with type 1 spinal muscular atrophy (FIREFISH part 2): secondary analyses from an open-label trial. The Lancet Neurology. 2022;21(12):1110-1119. doi:10.1016/s1474-4422(22)00339-8

Claborn MK, Stevens DL, Walker CK, Gildon BL. Nusinersen: A Treatment for Spinal Muscular Atrophy. Ann Pharmacother. 2018;53(1):61-69. doi:10.1177/1060028018789956

Dhillon S. Risdiplam: First Approval. Drugs. 2020;80(17):1853-1858. doi:10.1007/s40265-020-01410-z

Schorling DC, Pechmann A, Kirschner J. Advances in Treatment of Spinal Muscular Atrophy – New Phenotypes, New Challenges, New Implications for Care. JND. 2020;7(1):1-13. doi:10.3233/jnd-190424

Paik J. Risdiplam: A Review in Spinal Muscular Atrophy. CNS Drugs. 2022;36(4):401-410. doi:10.1007/s40263-022-00910-8

Genentech Inc. Evrysdi™ (risdiplam): US prescribing information. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213535s000lbl.pdf. Accessed 24 Aug 2020

https://www.fsma.pl/leki/evrysdi/

Genentech Inc. Evrysdi® (risdiplam) for oral solution: US prescribing information. 2021. https://www.gene.com/.

Roche Registration GmbH. Evrysdi® (risdiplam) powder for oral solution: EU summary of product characteristics. 2021. https://www.ema.europa.eu/

Kakazu J, Walker NL, Babin KC, i in. Risdiplam for the Use of Spinal Muscular Atrophy. Orthopedic Reviews. 2021;13(2). doi:10.52965/001c.25579

Qiu J, Wu L, Qu R, i in. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front Cell Neurosci. 2022;16. doi:10.3389/fncel.2022.942976

Gidaro T, Servais L. Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps. Dev Med Child Neurol. 2018;61(1):19-24. doi:10.1111/dmcn.14027

Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a Critical Exon of Human Survival Motor Neuron Is Regulated by a Unique Silencer Element Located in the Last Intron. Mol Cell Biol. 2006;26(4):1333-1346. doi:10.1128/mcb.26.4.1333-1346.2006

Finkel RS, Chiriboga CA, Vajsar J, i in. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. The Lancet. 2016;388(10063):3017-3026. doi:10.1016/s0140-6736(16)31408-8

Li Q. Nusinersen as a Therapeutic Agent for Spinal Muscular Atrophy. Yonsei Med J. 2020;61(4):273. doi:10.3349/ymj.2020.61.4.273

Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice. The American Journal of Human Genetics. 2008;82(4):834-848. doi:10.1016/j.ajhg.2008.01.014

Chiriboga CA, Swoboda KJ, Darras BT, i in. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology. 2016;86(10):890-897. doi:10.1212/wnl.0000000000002445

Hua Y, Sahashi K, Hung G, i in. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010;24(15):1634-1644. doi:10.1101/gad.1941310

Hua Y, Sahashi K, Rigo F, i in. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 2011;478(7367):123-126. doi:10.1038/nature10485

Chiriboga CA, Swoboda KJ, Darras BT, i in. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology. 2016;86(10):890-897. doi:10.1212/wnl.0000000000002445

Valori CF, Ning K, Wyles M, i in. Systemic Delivery of scAAV9 Expressing SMN Prolongs Survival in a Model of Spinal Muscular Atrophy. Sci Transl Med. 2010;2(35). doi:10.1126/scitranslmed.3000830

Le TT, McGovern VL, Alwine IE, i in. Temporal requirement for high SMN expression in SMA mice. Human Molecular Genetics. 2011;20(18):3578-3591. doi:10.1093/hmg/ddr275

Hjartarson HT, Nathorst-Böös K, Sejersen T. Disease Modifying Therapies for the Management of Children with Spinal Muscular Atrophy (5q SMA): An Update on the Emerging Evidence. DDDT. 2022;Volume 16:1865-1883. doi:10.2147/dddt.s214174

Messina S, Sframeli M. New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. JCM. 2020;9(7):2222. doi:10.3390/jcm9072222

https://clinicaltrials.gov/ct2/show/NCT02122952

Mendell JR, Al-Zaidy S, Shell R, i in. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377(18):1713-1722. doi:10.1056/nejmoa1706198

Glanzman AM, Mazzone E, Main M, i in. The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): Test development and reliability. Neuromuscular Disorders. 2010;20(3):155-161. doi:10.1016/j.nmd.2009.11.014

Glanzman AM, McDermott MP, Montes J, i in. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatric Physical Therapy. 2011;23(4):322-326. doi:10.1097/pep.0b013e3182351f04

Al-Zaidy SA, Kolb SJ, Lowes L, i in. AVXS-101 (Onasemnogene Abeparvovec) for SMA1: Comparative Study with a Prospective Natural History Cohort. JND. 2019;6(3):307-317. doi:10.3233/jnd-190403

Lowes LP, Alfano LN, Arnold WD, i in. Impact of Age and Motor Function in a Phase 1/2A Study of Infants With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatric Neurology. 2019;98:39-45. doi:10.1016/j.pediatrneurol.2019.05.005

Press Release Novartis 2019. [(accessed on 30 May 2020)]; Available online: https://www.novartis.com/news/media-releases/avexis-receives-fda-approval-zolgensma-first-and-only-gene-therapy-pediatric-patients-spinal-muscular-atrophy-sma

Press Release Novartis 2020. [(accessed on 30 May 2020)]; Available online: https://www.globenewswire.com/news-release/2020/05/19/2035354/0/en/AveXis-receives-EC-approval-and-activates-Day-One-access-program-for-Zolgensma-the-only-gene-therapy-for-spinal-muscular-atrophy-SMA.html

Ratni H, Karp GM, Weetall M, i in. Specific Correction of Alternative Survival Motor Neuron 2 Splicing by Small Molecules: Discovery of a Potential Novel Medicine To Treat Spinal Muscular Atrophy. J Med Chem. 2016;59(13):6086-6100. doi:10.1021/acs.jmedchem.6b00459

Ratni H, Ebeling M, Baird J, i in. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem. 2018;61(15):6501-6517. doi:10.1021/acs.jmedchem.8b00741

Pinard E, Green L, Reutlinger M, i in. Discovery of a Novel Class of Survival Motor Neuron 2 Splicing Modifiers for the Treatment of Spinal Muscular Atrophy. J Med Chem. 2017;60(10):4444-4457. doi:10.1021/acs.jmedchem.7b00406

Kletzl H, Marquet A, Günther A, i in. The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscular Disorders. 2019;29(1):21-29. doi:10.1016/j.nmd.2018.10.001

Czech C, Tang W, Bugawan T, i in. Biomarker for Spinal Muscular Atrophy: Expression of SMN in Peripheral Blood of SMA Patients and Healthy Controls. Wishart TM, red. PLoS ONE. 2015;10(10):e0139950. doi:10.1371/journal.pone.0139950

https://clinicaltrials.gov/ct2/show/NCT02240355

Torroba B, Macabuag N, Haisma EM, i in. RNA-based drug discovery for spinal muscular atrophy: a story of small molecules and antisense oligonucleotides. Expert Opinion on Drug Discovery. 2022;18(2):181-192. doi:10.1080/17460441.2022.2149733

Wang X, Xu D, Pei X, i in. CircSKA3 Modulates FOXM1 to Facilitate Cell Proliferation, Migration, and Invasion While Confine Apoptosis in Medulloblastoma via miR-383-5p. CMAR. 2020;Volume 12:13415-13426. doi:10.2147/cmar.s272753

Wang X, Zhong H, Wang L, i in. MiR-29 Induces K562 Cell Apoptosis by Down-Regulating FoxM1. Med Sci Monit. 2015;21:3115-3120. doi:10.12659/msm.894554

Campagne S, Boigner S, Rüdisser S, i in. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol. 2019;15(12):1191-1198. doi:10.1038/s41589-019-0384-5

Sivaramakrishnan M, McCarthy KD, Campagne S, i in. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun. 2017;8(1). doi:10.1038/s41467-017-01559-4

Poirier A, Weetall M, Heinig K, i in. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect. 2018;6(6):e00447. doi:10.1002/prp2.447

Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational survival motor neuron 2 (SMN2) splicing modifier for spinal muscular atrophy (SMA). Expert Opinion on Investigational Drugs. 2022;31(5):451-461. doi:10.1080/13543784.2022.2056836

Genentech Inc. Evrysdi ® (risdiplam) oral solution: US regulatory information. 2021. https://www.gene.com/

Baranello G, Darras BT, Day JW, i in. Risdiplam in Type 1 Spinal Muscular Atrophy. N Engl J Med. 2021;384(10):915-923. doi:10.1056/nejmoa2009965

Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, i in. Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls. N Engl J Med. 2021;385(5):427-435. doi:10.1056/nejmoa2102047

FIREFISH Part 2: Efficacy and Safety of Risdiplam (RG7916) in Infants with Type 1 Spinal Muscular Atrophy (SMA) (1302), 2020

Oskoui M, Day JW, Deconinck N, i in. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol. Published online 3 luty 2023. doi:10.1007/s00415-023-11560-1

Muntoni F, Bertini E, Comi G, i in. Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromuscular Disorders. 2020;30(12):959-969. doi:10.1016/j.nmd.2020.10.008

Ferrantini G, Coratti G, Onesimo R, i in. Body mass index in type 2 spinal muscular atrophy: a longitudinal study. Eur J Pediatr. 2022;181(5):1923-1932. doi:10.1007/s00431-021-04325-3

Mercuri E, Deconinck N, Mazzone ES, i in. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. The Lancet Neurology. 2022;21(1):42-52. doi:10.1016/s1474-4422(21)00367-7

https://clinicaltrials.gov/ct2/show/NCT03032172

Chiriboga C, Bruno C, Duong T, i in. SMA - TREATMENT. Neuromuscular Disorders. 2021;31:S134-S135. doi:10.1016/j.nmd.2021.07.304

Chiriboga C, Bruno C, Duong T, i in. P.110 JEWELFISH: 24-month safety, pharmacodynamic and exploratory efficacy data in non-treatment-naïve patients with SMA receiving treatment with risdiplam https://www.neurologylive.com/view/sma-treatment-risdiplam-continues-show-safety-smn-depletion-2-year-jewelfish-data

https://clinicaltrials.gov/ct2/show/NCT03779334

Finkel R, Farrar M, Vlodavets D, i in. FP.24 RAINBOWFISH: Preliminary efficacy and safety data in risdiplam-treated infants with presymptomatic spinal muscular atrophy (SMA). Neuromuscular Disorders. 2022;32:S85-S86. doi:10.1016/j.nmd.2022.07.183

Current Summary of Product Characteristics Evrysdi, 2023

Opublikowane

8 sierpnia 2023