Wpływ dysbiozy mikrobioty jelitowej na choroby układu sercowo-naczyniowego
Słowa kluczowe:
choroby sercowo-naczyniowe, mikrobiota jelitowaStreszczenie
W organizmie człowieka żyje ok. 40 bilionów bakterii. Ich wpływ jest kluczowy na wiele fizjologicznych procesów zachodzących w ciele – trawienie, barierę immunologiczną, regulację układu nerwowego poprzez oś jelito-mózg. Dysbioza mikrobioty jelitowej może powodować upośledzenie wielu z tych reakcji. Udokumentowano zmianę składu mikrobioty jelitowej między innymi w chorobach nerek, układu nerwowego i nowotworach. Poznanie kolejnego organu człowieka, jakim określa się mikrobiotę jelitową, może być kluczowe w prognozowaniu chorób sercowo-naczyniowych. Obecnie przeprowadzane są badania na zwierzętach, których wyniki są obiecujące i stanowią podstawę do dalszych rozważań. Celem niniejszej pracy jest przedstawienie powiązania zaburzenia składu mikrobioty jelitowej z chorobami układu sercowo-naczyniowego.
Rozdziały
-
Wstęp
-
Skład mikrobioty jelitowej u człowieka
-
Funkcje mikrobioty jelitowej
-
Migotanie przedsionków
-
Mikrobiota jelitowa a nadciśnienie tętnicze
-
Mikrobiota jelitowa a zawał serca
-
Mikrobiota jelitowa a udar mózgu
-
Zmiana mikrobioty jelitowej
-
Wnioski i podsumowanie
Bibliografia
Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, i in. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 2020;41(1):12–85. doi:10.1093/eurheartj/ehz859
Nasr SH, Radhakrishnan J, D’Agati VD. Bacterial infection-related glomerulonephritis in adults. Kidney Int. 2013;83(5):792–803. doi:10.1038/ki.2012.407
Lipsky BA, Byren I, Hoey CT. Treatment of bacterial prostatitis. Clin Infect Dis. 2010;50(12):1641–52. doi:10.1086/652861
Peek RM, Crabtree JE. Helicobacter infection and gastric neoplasia. J Pathol. 2006;208(2):233–48. doi:10.1002/path.1868
Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, i in. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6(26):22613–23. doi:10.18632/oncotarget.4209
Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34(10):2193–7. doi:10.1093/carcin/bgt249
Farsimadan M, Motamedifar M. Bacterial infection of the male reproductive system causing infertility. J Reprod Immunol. 2020;142:103183. doi:10.1016/j.jri.2020.103183
Winter G, Hart RA, Charlesworth RPG, Sharpley CF. Gut microbiome and depression: what we know and what we need to know. Rev Neurosci. 2018;29(6):629–43. doi:10.1515/revneuro-2017-0072
Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, i in. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30(3):350–8. doi:10.1002/mds.26069
Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, Nueno-Palop C, i in. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005;51(4):270–4. doi:10.1007/s00284-005-0020-3
Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, i in. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4:29. doi:10.1186/s40168-016-0172-3
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, i in. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5. doi:10.1073/pnas.1002601107
Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86 Suppl 1:13–5. doi:10.1016/j.earlhumdev.2010.01.004
Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes. 2012;3(3):203–20. doi:10.4161/gmic.20169
Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, i in. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi:10.1128/MMBR.00036-17
Aujoulat F, Roudière L, Picaud J-C, Jacquot A, Filleron A, Neveu D, i in. Temporal dynamics of the very premature infant gut dominant microbiota. BMC Microbiol. 2014;14:325. doi:10.1186/s12866-014-0325-0
Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023–30. doi:10.3945/ajcn.2010.29877
Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, i in. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–21. doi:10.1542/peds.2005-2824
Lin A, Bik EM, Costello EK, Dethlefsen L, Haque R, Relman DA, i in. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One. 2013;8(1):e53838. doi:10.1371/journal.pone.0053838
Stewart JA, Chadwick VS, Murray A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol. 2005;54(Pt 12):1239–42. doi:10.1099/jmm.0.46189-0
Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17(6):478–82. doi:10.1016/j.anaerobe.2011.03.009
Davis MY, Zhang H, Brannan LE, Carman RJ, Boone JH. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk. Microbiome. 2016;4(1):53. doi:10.1186/s40168-016-0198-6
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, i in. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7. doi:10.1038/nature11053
Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, i in. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. doi:10.1016/j.ebiom.2019.11.051
Cukrowska B, Bierła JB, Zakrzewska M, Klukowski M, Maciorkowska E. The Relationship between the Infant Gut Microbiota and Allergy. The Role of Bifidobacterium breve and Prebiotic Oligosaccharides in the Activation of Anti-Allergic Mechanisms in Early Life. Nutrients. 2020;12(4):946. doi:10.3390/nu12040946
Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017;14(10):573–84. doi:10.1038/nrgastro.2017.88
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473–93. doi:10.1007/s00018-018-2943-4
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208. doi:10.1080/21688370.2017.1373208
Sommer F, Bäckhed F. The gut microbiota--masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38. doi:10.1038/nrmicro2974
Socała K, Doboszewska U, Szopa A, Serefko A, Włodarczyk M, Zielińska A, i in. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res. 2021;172:105840. doi:10.1016/j.phrs.2021.105840
Maria Trusz-Gluza, Wiktoria Leśniak. Migotanie przedsionków (AF). Dostępne na: https://www.mp.pl/interna/chapter/B16.II.2.6.6.
Spencer TM, Blumenstein RF, Pryse KM, Lee S-L, Glaubke DA, Carlson BE, i in. Fibroblasts Slow Conduction Velocity in a Reconstituted Tissue Model of Fibrotic Cardiomyopathy. ACS Biomater Sci Eng. 2017;3(11):3022–8. doi:10.1021/acsbiomaterials.6b00576
Yoo S, Aistrup G, Shiferaw Y, Ng J, Mohler PJ, Hund TJ, i in. Oxidative stress creates a unique, CaMKII-mediated substrate for atrial fibrillation in heart failure. JCI Insight. 2018;3(21):e120728, 120728. doi:10.1172/jci.insight.120728
Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen B-X, i in. Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep. 2015;5:11427. doi:10.1038/srep11427
Conen D, Ridker PM, Everett BM, Tedrow UB, Rose L, Cook NR, i in. A multimarker approach to assess the influence of inflammation on the incidence of atrial fibrillation in women. Eur Heart J. 2010;31(14):1730–6. doi:10.1093/eurheartj/ehq146
Zhang Y, Zhang S, Li B, Luo Y, Gong Y, Jin X, i in. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc Res. 2022;118(3):785–97. doi:10.1093/cvr/cvab114
Zuo K, Li J, Li K, Hu C, Gao Y, Chen M, i in. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience. 2019;8(6):giz058. doi:10.1093/gigascience/giz058
Kong B, Fu H, Xiao Z, Zhou Y, Shuai W, Huang H. Gut Microbiota Dysbiosis Induced by a High-Fat Diet Increases Susceptibility to Atrial Fibrillation. Can J Cardiol. 2022;38(12):1962–75. doi:10.1016/j.cjca.2022.08.231
Yao C, Veleva T, Scott L, Cao S, Li L, Chen G, i in. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation. 2018;138(20):2227–42. doi:10.1161/CIRCULATIONAHA.118.035202
Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, i in. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi:10.1186/s40168-016-0222-x
Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, i in. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–40. doi:10.1161/HYPERTENSIONAHA.115.05315
Jiang S, Shui Y, Cui Y, Tang C, Wang X, Qiu X, i in. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biol. 2021;46:102115. doi:10.1016/j.redox.2021.102115
Yang F, Chen H, Gao Y, An N, Li X, Pan X, i in. Gut microbiota-derived short-chain fatty acids and hypertension: Mechanism and treatment. Biomed Pharmacother. 2020;130:110503. doi:10.1016/j.biopha.2020.110503
Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128(5):353–66. doi:10.1111/apm.13038
Chou R-H, Chen C-Y, Chen I-C, Huang H-L, Lu Y-W, Kuo C-S, i in. Trimethylamine N-Oxide, Circulating Endothelial Progenitor Cells, and Endothelial Function in Patients with Stable Angina. Sci Rep. 2019;9(1):4249. doi:10.1038/s41598-019-40638-y
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, i in. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231–64. doi:10.1016/j.jacc.2018.08.1038
Qian X, Liu A, Liang C, He L, Xu Z, Tang S. Analysis of gut microbiota in patients with acute myocardial infarction by 16S rRNA sequencing. Ann Transl Med. 2022;10(24):1340. doi:10.21037/atm-22-5671
Han Y, Gong Z, Sun G, Xu J, Qi C, Sun W, i in. Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Front Microbiol. 2021;12:680101. doi:10.3389/fmicb.2021.680101
Anna Członkowska, Maciej Niewada. Udar mózgu. Dostępne na: https://www.mp.pl/interna/chapter/B16.II.2.29.
Benakis C, Poon C, Lane D, Brea D, Sita G, Moore J, i in. Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke. 2020;51(6):1844–54. doi:10.1161/STROKEAHA.120.029262
Chen Y, Liang J, Ouyang F, Chen X, Lu T, Jiang Z, i in. Persistence of Gut Microbiota Dysbiosis and Chronic Systemic Inflammation After Cerebral Infarction in Cynomolgus Monkeys. Front Neurol. 2019;10:661. doi:10.3389/fneur.2019.00661
Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, i in. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J Neurosci. 2016;36(28):7428–40. doi:10.1523/JNEUROSCI.1114-16.2016
Yin J, Liao S-X, He Y, Wang S, Xia G-H, Liu F-T, i in. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc. 2015;4(11):e002699. doi:10.1161/JAHA.115.002699
Kim S-K, Guevarra RB, Kim Y-T, Kwon J, Kim H, Cho JH, i in. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J Microbiol Biotechnol. 2019;29(9):1335–40. doi:10.4014/jmb.1906.06064
Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy J-M, Dequenne I, i in. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2019;9:454. doi:10.3389/fcimb.2019.00454
Holvoet T, Joossens M, Wang J, Boelens J, Verhasselt B, Laukens D, i in. Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. Gut. 2017;66(5):980–2. doi:10.1136/gutjnl-2016-312513
Johnsen PH, Hilpüsch F, Cavanagh JP, Leikanger IS, Kolstad C, Valle PC, i in. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018;3(1):17–24. doi:10.1016/S2468-1253(17)30338-2
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020;113(12):2019–40. doi:10.1007/s10482-020-01474-7
Liu B-N, Liu X-T, Liang Z-H, Wang J-H. Gut microbiota in obesity. World J Gastroenterol. 2021;27(25):3837–50. doi:10.3748/wjg.v27.i25.3837
Opublikowane
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.