Technologia CRISPR-Cas9 jako potencjalna terapia mukowiscydozy

Autorzy

Rafał Wąsek
Student medycyny
Patrycja Maj
Anna Lis
Kazimierz Kukla

Słowa kluczowe:

CRISPR/Cas9, mukowiscydoza, Terapia genowa

Streszczenie

Abstrakt

Mukowiscydoza (Cystic fibrosis – CF) jest jedną z najczęściej występujących śmiertelnych chorób genetycznych. Powikłania płucne CF warunkują 90% zgonów wśród pacjentów cierpiących na CF. Głównymi ograniczeniami aktualnych terapii CF jest brak skuteczności leków na wszystkie warianty mutacji CFTR. Przełomem w poszukiwaniu skuteczniejszego leczenia CF może okazać się edycja genów wykorzystująca CRISPR-Cas9. Technologia CRISPR-Cas9 dzięki swojej precyzyjności i efektywności edycji genów mogłaby przynieść znaczne poprawy skuteczności leczenia CF. W terapii CF z wykorzystaniem CRISPR-Cas9 możliwa jest korekcja mutacji w genie CFTR, co umożliwia nie tylko złagodzenie objawów, ale również korekcje przyczyny CF. Możliwości terapeutyczne CRISPR-Cas9 w terapii CF zostały udowodnione poprzez korekcje delecji F508 w jednojądrzastych komórkach krwi obwodowej. Przy wykorzystaniu CRISPR-Cas9 udało się przywrócić prawidłowe funkcjonowanie CFTR do 40.2%, 74%, 88% wartości prawidłowo funkcjonujących CFTR. Wykazano również częściowe przywrócenie prawidłowych funkcji CFTR wraz z równoległym obniżeniem aktywności nabłonkowych kanałów Na+ w rzadszych wariantach CF. Udowodniono możliwość dokonania edycji genów za pomocą CRISPR-Cas9 w warunkach in vivo. Aktualnie największym ograniczeniem CRISPR-Cas9 jest skuteczność dostarczania kompleksów CRISPR-Cas9 do komórek. Brakuje również danych na temat długofalowych skutków terapii CRISPR-Cas9 oraz mutacji off-target, co wymaga prowadzenia dalszych badań z wykorzystaniem technologii CRISPR-Cas9.

Słowa kluczowe: Mukowiscydoza, CRISPR-Cas9, Terapia genowa

 

Abstract:

Cystic fibrosis (CF) is one of the most common, lethal genetic disease in the world. Respiratory complications are leading cause of mortality in 90% of patient with CF. Main limitations in treatment of CF is lack of effective medication for all mutation variants. Breakthrough in finding effective treatment of CF may be gene editing using CRISPR-Cas9. Thanks to precision and efficiency CRISPR-Cas9 technology could increase effectiveness of CF treatment. In therapy of CF by using CRISPR-Cas9 possible is correcting mutation in CFTR gene, which not only can moderate symptoms but also correct the cause of the disease. Therapeutic applications of CRIPSR-Cas9 has been proven by correction of F508 deletion in peripheral blood mononuclear cells. By using CRIPSR-Cas9 restoration of functionality CFTR has been achieved in 40,2%, 74%, 88% in comparison with physiological CFTR. Partial restoration of CFTR functionality with simulations decreasing activity of  epithelial Na+ canals has been achieved in more rare variants of CF. Gene editing applications of CRISPR-Cas9 has been proven on in vivo models. Currently the most prominent limitation of CRISPR-Cas9 is effective delivering CRISPR-Cas9 complexes to cells. There are no date regarding long-term results of CRISPR-Cas9 therapy or off-target mutations, which requires continuation of research using CRISPR-Cas9 technology.

Keywords: Cystic fibrosis, CRISPR-Cas9, Gene therapy

Bibliografia

Referencje:

Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther. 2021 Feb 3;29(2):571-586. doi: 10.1016/j.ymthe.2020.09.028. Epub 2020 Sep 20. PMID: 33238136; PMCID: PMC7854284.

Cotrim AP, Baum BJ. Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol. 2008 Jan;36(1):97-103. doi: 10.1177/0192623307309925. PMID: 18337227.

Laurent M, Geoffroy M, Pavani G, Guiraud S. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Cells. 2024 May 8;13(10):800. doi: 10.3390/cells13100800. PMID: 38786024; PMCID: PMC11119143.

Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol. 2018 Mar 12;200(7):e00580-17. doi: 10.1128/JB.00580-17. PMID: 29358495; PMCID: PMC5847661.

Uyhazi KE, Bennett J. A CRISPR view of the 2020 Nobel Prize in Chemistry. J Clin Invest. 2021 Jan 4;131(1):e145214. doi: 10.1172/JCI145214. PMID: 33201862; PMCID: PMC7773339.

Asmamaw M, Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics. 2021 Aug 21;15:353-361. doi: 10.2147/BTT.S326422. PMID: 34456559; PMCID: PMC8388126.

Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Front Cell Infect Microbiol. 2019 Mar 22;9:69. doi: 10.3389/fcimb.2019.00069. PMID: 30968001; PMCID: PMC6439341.

Lim KRQ, Yoon C, Yokota T. Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. J Pers Med. 2018 Nov 24;8(4):38. doi: 10.3390/jpm8040038. PMID: 30477208; PMCID: PMC6313657.

Román-Rodríguez FJ, Ugalde L, Álvarez L, Díez B, Ramírez MJ, Risueño C, Cortón M, Bogliolo M, Bernal S, March F, Ayuso C, Hanenberg H, Sevilla J, Rodríguez-Perales S, Torres-Ruiz R, Surrallés J, Bueren JA, Río P. NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia. Cell Stem Cell. 2019 Nov 7;25(5):607-621.e7. doi: 10.1016/j.stem.2019.08.016. Epub 2019 Sep 19. PMID: 31543367.

Dickinson KM, Collaco JM. Cystic Fibrosis. Pediatr Rev. 2021 Feb;42(2):55-67. doi: 10.1542/pir.2019-0212. PMID: 33526571; PMCID: PMC8972143

Polgreen PM, Comellas AP. Clinical Phenotypes of Cystic Fibrosis Carriers. Annu Rev Med. 2022 Jan 27;73:563-574. doi: 10.1146/annurev-med-042120-020148. PMID: 35084992; PMCID: PMC8884701

Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med. 2015 Jan 22;372(4):351-62. doi: 10.1056/NEJMra1300109. PMID: 25607428; PMCID: PMC4916857.

Andersen D.H. Cystic fibrosis of the pancreas and its relation to celiac disease: A clinical and pathological study. Am. J. Dis. Child. 1938;56:344–399. doi: 10.1001/archpedi.1938.01980140114013

Sands D, Walicka-Serzysko K, Doniec Z i wsp. ReKOMen- dacje PostępowAnia w mukowiScydozie (cystic fibrosis – CF) dla lekarzy POZ – KOMPAS CF. Lekarz POZ 2017; 3: 299-322.

Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, Wolfgang MC. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One. 2012;7(9):e45001. doi: 10.1371/journal.pone.0045001. Epub 2012 Sep 26. PMID: 23049765; PMCID: PMC3458854.

Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros 2022; 21: 456–462

Cutting G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015;16:45–56. doi: 10.1038/nrg3849

Kerem E. et al.: The relation between genotype and phenotype in cystic fibrosis – analysis of the most common mutation (delta F508). N. Engl. J. Med. 1990, 323:1517-1522

Higgins C.F.: Export – import family expands. Nature 1989, 340:342

Rommens J.M., Iannuzzi M.C., Kerem B., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., et al. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science. 1989;245:1059–1065. doi: 10.1126/science.2772657

Castellani C, Cuppens H, Macek M, Jr, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros. 2008;7(3):179–96

Cutting, G., Sosnay, P., Karchin, R., Zielenski, J., Penland, C., & Castellani, C. (2009). CFTR2: Defining the clinical and functional consequences of CFTR mutations. Pediatric pulmonology, 44(SUPPL. 32), 161-162

Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):p. 2519–2531

Ratjen F, Bell SC, Rowe SM, et al. Cystic fibrosis. Nat Rev Dis Primers. 2015;1:15010

De Boeck K, Zolin A, Cuppens H, et al. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J Cyst Fibros. 2014;13(4):403–9

Reis FJ, Damaceno N. Cystic fibrosis. J Pediatr. 1998;74(Suppl 1):S76–9.

Boucher R.C. Cystic fibrosis: A disease of vulnerability to airway surface dehydration. Trends Mol. Med. 2007;13:231–240. doi: 10.1016/j.molmed.2007.05.001

Gibson-Corley K.N., Meyerholz D.K., Engelhardt J.F. Pancreatic pathophysiology in cystic fibrosis. J. Pathol. 2016;238:311–320. doi: 10.1002/path.4634

Davis PB. Cystic fibrosis since 1938. Am J Respir Crit Care Med. 2006;173(5):475-482. doi:10.1164/rccm.200505-840OE

Gilligan PH. Infections in patients with cystic fibrosis: diagnostic microbiology update. Clin Lab Med. 2014 Jun;34(2):197-217. doi: 10.1016/j.cll.2014.02.001. Epub 2014 Apr 12. PMID: 24856524; PMCID: PMC7115738.

Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N. Diagnosis of Cystic Fibrosis Consensus Guidelines from the Cystic Fibrosis Foundation. J Pediatr. Feb. 2017;181s:S4–S15. doi: 10.1016/j.jpeds.2016.09.064

Cystic Fibrosis Foundation . 2022 Annual Data Report. Cystic Fibrosis Foundation Patient Registry; 2023

Alan R. Smyth, Scott C. Bell, Snezana Bojcin, Mandy Bryon, Alistair Duff, Patrick Flume, et al. Standardy opieki Europejskiego Towarzystwa Mukowiscydozy: wytyczne i najlepsze praktyki, Pediatria Polska, Volume 91, Supplement 1, 2016, Pages S30-S53, doi.org/10.1016/j.pepo.2016.08.014

Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol. 2020 Feb 21;10:1662. doi: 10.3389/fphar.2019.01662. PMID: 32153386; PMCID: PMC7046560

Li, H.; Salomon, J.J.; Sheppard, D.N.; Mall, M.A.; Galietta, L.J. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Curr. Opin. Pharmacol. 2017, 34, 91–97

Mall, M.A.; Galietta, L.J. Targeting ion channels in cystic fibrosis. J. Cyst. Fibros. 2015, 1, 561–570

Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med. 2017 Apr 27;15(1):84. doi: 10.1186/s12967-017-1193-9. PMID: 28449677; PMCID: PMC5408469.

Maule G, Arosio D, Cereseto A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing,Int. J. Mol. Sci. 2020, 21, 3903

CRISPR

Rieske, Piotr. “Zastosowanie edycji genomu w terapii-kontekst immunologiczny.” Polish Journal of Allergology/Alergologia Polska 8.4 (2021)

Amitai, Gil, and Rotem Sorek. “CRISPR–Cas adaptation: insights into the mechanism of action.” Nature Reviews Microbiology 14.2 (2016): 67-76.

Sternberg, Samuel H., et al. “Adaptation in CRISPR-Cas systems.” Molecular cell 61.6 (2016): 797-808.

Jackson, Simon A., et al. “CRISPR-Cas: adapting to change.” Science 356.6333 (2017): eaal5056.

Marraffini, Luciano A., and Erik J. Sontheimer. “CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.” Science 322.5909 (2008): 1843-1845.

Czarnek, Maria, and Joanna Bereta. “System CRISPR-Cas: od odporności bakterii do inżynierii genomowej.” (2016).

Blicharska, Dalia, et al. “CRISPR/Cas jako inteligentny system immunologiczny bakterii I archea.” Postępy Biochemii 68.3 (2022): 235-245

Gleditzsch, Daniel, et al. “PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures.” RNA biology 16.4 (2019): 504-517.

Ming, S. H. A. O., X. U. Tian-Rui, and C. H. E. N. Ce-Shi. “The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.” Zoological Research 37.4 (2016): 191.

Jiang, Fuguo, and Jennifer A. Doudna. “CRISPR–Cas9 structures and mechanisms.” Annual review of biophysics 46.1 (2017): 505-529.

A Liu, Zhenquan, et al. “Application of different types of CRISPR/Cas-based systems in bacteria.” Microbial cell factories 19 (2020): 1-14.

Sadelain, Michel. “Chimeric antigen receptors: a paradigm shift in immunotherapy.” Annual Review of Cancer Biology 1.1 (2017): 447-466

Hütter, Gero, et al. “Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation.” New England Journal of Medicine 360.7 (2009): 692-698.

Schwank, Gerald, et al. “Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.” Cell stem cell 13.6 (2013): 653-658.

Graham, Carina, and Stephen Hart. “CRISPR/Cas9 gene editing therapies for cystic fibrosis.” Expert opinion on biological therapy 21.6 (2021): 767-780.

Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, et. al. Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus. Mol Ther. 2022 Jan 5;30(1):223-237. doi: 10.1016/j.ymthe.2021.03.023. Epub 2021 Mar 29. PMID: 33794364; PMCID: PMC8753290.

Walker, Amy J., et al. "Molecular and functional correction of a deep intronic splicing mutation in CFTR by CRISPR-Cas9 gene editing." Molecular Therapy Methods & Clinical Development 31 (2023).

Krishnamurthy S, Wohlford-Lenane C, Kandimalla S, Sartre G, Meyerholz DK, et. al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat Commun. 2019 Oct 28;10(1):4906. doi: 10.1038/s41467-019-12922-y. PMID: 31659165; PMCID: PMC6817825.

Bulcaen M, Kortleven P, Liu RB, Maule G, Dreano E. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell reports. Medicine, 5(5), 101544

Wei T, Sun Y, Cheng Q, Chatterjee S, Traylor Z, Johnson Z, Coquelin M, Wang J. Torres M, Lian X, Wang X, Xiao Y, Hodges C, Siegwart D. Lung SORT LNPs enable precise homology- directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nature Communications 2023;14:7322.

Khatibi S, Modaresi M, Oskuee R, Salehi M, Aghaee-Bakhtiari S. Genetic modification of cystic fibrosis with ΔF508 mutation of CFTR gene using the CRISPR system in peripheral blood mononuclear cells. Iran J Basic Med Sci. 2021;24(1):73–78.

Amistadi S, Maule G, Ciciani M, Ensinck MM, De Keersmaecker L, Ramalho AS, Guidone D, Buccirossi M, Galietta LJV, Carlon MS, Cereseto A. Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Mol Ther. 2023;31(6):1647-1660.

Suzuki S, Crane AM, Anirudhan V, Barillà C, Matthias N, Randell SH, Rab A, Sorscher EJ, Kerschner JL, Yin S, Harris A, Mendel M, Kim K, Zhang L, Conway A, Davis BR. Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction. Mol Ther. 2020;28(7):1684-1695.

Vaidyanathan S, Salahudeen AA, Sellers ZM, Bravo DT, Choi SS, Batish A, Le W, Baik R, Kaushik MP. High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues cftr function in differentiated epithelia. Cell Stem Cell, 2020;26,161-171.

Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Front Med (Lausanne). 2021 Mar 3;8:649896. doi: 10.3389/fmed.2021.649896. PMID: 33748164; PMCID: PMC7965951.

Laurent M, Geoffroy M, Pavani G, Guiraud S. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Cells. 2024 May 8;13(10):800. doi: 10.3390/cells13100800. PMID: 38786024; PMCID: PMC11119143.

Opublikowane

24 sierpnia 2025