TERAPIA GENOWA CRISPR – POTENCJALNE WYKORZYSTANIE, WYZWANIA I ZAGROŻENIA
Słowa kluczowe:
CRISPR, terapia genowa, medycyna regeneracyjna, bioetykaStreszczenie
Abstrakt:
Postęp w technologii edycji genomu otworzył zupełnie nowe perspektywy w medycynie, w szczególności dzięki systemowi CRISPR-Cas9 (ang. clustered regularly interspaced short palindromic repeat – CRISPR). System ten, wykorzystujący precyzyjne ukierunkowanie endonukleazy Cas9 przez przewodnika RNA, umożliwia modyfikację sekwencji DNA, co stanowi podstawę terapii genowych. W niniejszej pracy omawiamy zasady działania CRISPR, a także metody dostarczania narzędzi edycyjnych do komórek, realizowane m.in. za pomocą wektorów wirusowych (AAV) oraz nanocząsteczek lipidowych (LNP). W niniejszym opracowaniu zestawiliśmy potencjalne zastosowania technologii CRISPR w leczeniu chorób genetycznych, zakaźnych oraz nowotworowych, podkreślając jej potencjał w medycynie personalizowanej. Ponadto omówiliśmy wyzwania i problemy związane z techniczną, jak również etyczno-moralną problematyką wykorzystania terapii CRISPR. Pomimo istniejących ograniczeń, CRISPR-Cas9 prezentuje się jako narzędzie o ogromnym potencjale terapeutycznym, które może zrewolucjonizować podejście do leczenia wielu schorzeń. Poniższa praca stanowi kompleksowy przegląd aktualnego stanu wiedzy, wskazując kierunki dalszych badań nad zwiększeniem efektywności i bezpieczeństwa omawianej technologii.
Słowa kluczowe: CRISPR, terapia genowa, medycyna regeneracyjna, bioetyka
Bibliografia
M. R. Javed et al., “CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms,” Curr Microbiol, vol. 75, no. 12, pp. 1675–1683, Dec. 2018, doi: 10.1007/s00284-018-1547-4.
M. Czarnek and J. Bereta, “The CRISPR-Cas system – from bacterial immunity to genome engineering,” Postepy Hig Med Dosw, vol. 70, pp. 901–916, Sep. 2016, doi: 10.5604/17322693.1216379.
F. J. M. Mojica and L. Montoliu, “On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals,” Trends Microbiol, vol. 24, no. 10, pp. 811–820, Oct. 2016, doi: 10.1016/j.tim.2016.06.005.
R. Tang and Z. Xu, “Gene therapy: a double-edged sword with great powers,” Mol Cell Biochem, vol. 474, no. 1–2, pp. 73–81, Nov. 2020, doi: 10.1007/s11010-020-03834-3.
G. A. R. Gonçalves and R. de M. A. Paiva, “Gene therapy: advances, challenges and perspectives,” Einstein (São Paulo), vol. 15, no. 3, pp. 369–375, Sep. 2017, doi: 10.1590/s1679-45082017rb4024.
T. Wirth, N. Parker, and S. Ylä-Herttuala, “History of gene therapy,” Gene, vol. 525, no. 2, pp. 162–169, Aug. 2013, doi: 10.1016/j.gene.2013.03.137.
D. H. M. Steffin, E. M. Hsieh, and R. H. Rouce, “Gene Therapy,” Adv Pediatr, vol. 66, pp. 37–54, Aug. 2019, doi: 10.1016/j.yapd.2019.04.001.
F. Memi, A. Ntokou, and I. Papangeli, “CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations,” Semin Perinatol, vol. 42, no. 8, pp. 487–500, Dec. 2018, doi: 10.1053/j.semperi.2018.09.003.
R. Barrangou et al., “CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes,” Science (1979), vol. 315, no. 5819, pp. 1709–1712, Mar. 2007, doi: 10.1126/science.1138140.
F. Hille, H. Richter, S. P. Wong, M. Bratovič, S. Ressel, and E. Charpentier, “The Biology of CRISPR-Cas: Backward and Forward,” Cell, vol. 172, no. 6, pp. 1239–1259, Mar. 2018, doi: 10.1016/j.cell.2017.11.032.
F. V. Jacinto, W. Link, and B. I. Ferreira, “CRISPR/Cas9‐mediated genome editing: From basic research to translational medicine,” J Cell Mol Med, vol. 24, no. 7, pp. 3766–3778, Apr. 2020, doi: 10.1111/jcmm.14916.
S. Bozorg Qomi, A. Asghari, and M. Mojarrad, “An Overview of the CRISPR-Based Genomic- and Epigenome-Editing System: Function, Applications, and Challenges,” Adv Biomed Res, vol. 8, no. 1, p. 49, 2019, doi: 10.4103/abr.abr_41_19.
V. Tadić, G. Josipović, V. Zoldoš, and A. Vojta, “CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity,” Methods, vol. 164–165, pp. 109–119, Jul. 2019, doi: 10.1016/j.ymeth.2019.05.003.
M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier, “A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science (1979), vol. 337, no. 6096, pp. 816–821, Aug. 2012, doi: 10.1126/science.1225829.
Z. Mao et al., “CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety,” Trends Food Sci Technol, vol. 122, pp. 211–222, Apr. 2022, doi: 10.1016/j.tifs.2022.02.030.
F. Teng et al., “Repurposing CRISPR-Cas12b for mammalian genome engineering,” Cell Discov, vol. 4, no. 1, p. 63, Nov. 2018, doi: 10.1038/s41421-018-0069-3.
Y. Wang et al., “The development of a fluorescence/colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets,” J Hazard Mater, vol. 449, p. 131044, May 2023, doi: 10.1016/j.jhazmat.2023.131044.
S. Bu et al., “Ultrasensitive detection of pathogenic bacteria by CRISPR/Cas12a coupling with a primer exchange reaction,” Sens Actuators B Chem, vol. 347, p. 130630, Nov. 2021, doi: 10.1016/j.snb.2021.130630.
R. Yang, L. Zhao, X. Wang, W. Kong, and Y. Luan, “Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection,” Crit Rev Anal Chem, vol. 54, no. 7, pp. 2670–2687, Oct. 2024, doi: 10.1080/10408347.2023.2197062.
J. T. Granados-Riveron and G. Aquino-Jarquin, “CRISPR/Cas13-Based Approaches for Ultrasensitive and Specific Detection of microRNAs,” Cells, vol. 10, no. 7, p. 1655, Jul. 2021, doi: 10.3390/cells10071655.
M. Kordyś, R. Sen, and Z. Warkocki, “Applications of the versatile CRISPR‐Cas13 RNA targeting system,” WIREs RNA, vol. 13, no. 3, May 2022, doi: 10.1002/wrna.1694.
J. F. Bot, J. van der Oost, and N. Geijsen, “The double life of CRISPR–Cas13,” Curr Opin Biotechnol, vol. 78, p. 102789, Dec. 2022, doi: 10.1016/j.copbio.2022.102789.
M. L. Maeder and C. A. Gersbach, “Genome-editing Technologies for Gene and Cell Therapy,” Molecular Therapy, vol. 24, no. 3, pp. 430–446, Mar. 2016, doi: 10.1038/mt.2016.10.
N. Sayed et al., “Gene therapy: Comprehensive overview and therapeutic applications,” Life Sci, vol. 294, p. 120375, Apr. 2022, doi: 10.1016/j.lfs.2022.120375.
Y. Shamshirgaran, J. Liu, H. Sumer, P. J. Verma, and A. Taheri-Ghahfarokhi, “Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR,” 2022, pp. 29–46. doi: 10.1007/978-1-0716-2301-5_2.
M. M. Mahfouz, L. Li, Md. Shamimuzzaman, A. Wibowo, X. Fang, and J.-K. Zhu, “De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks,” Proceedings of the National Academy of Sciences, vol. 108, no. 6, pp. 2623–2628, Feb. 2011, doi: 10.1073/pnas.1019533108.
R. Benjamin, B. K. Berges, A. Solis-Leal, O. Igbinedion, C. L. Strong, and M. R. Schiller, “TALEN gene editing takes aim on HIV,” Hum Genet, vol. 135, no. 9, pp. 1059–1070, Sep. 2016, doi: 10.1007/s00439-016-1678-2.
S. Pagant et al., “ZFN-mediated in vivo gene editing in hepatocytes leads to supraphysiologic α-Gal A activity and effective substrate reduction in Fabry mice,” Molecular Therapy, vol. 29, no. 11, pp. 3230–3242, Nov. 2021, doi: 10.1016/j.ymthe.2021.03.018.
H.-X. Zhang, Y. Zhang, and H. Yin, “Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9,” Molecular Therapy, vol. 27, no. 4, pp. 735–746, Apr. 2019, doi: 10.1016/j.ymthe.2019.01.014.
D. Carroll, “Genome Engineering With Zinc-Finger Nucleases,” Genetics, vol. 188, no. 4, pp. 773–782, Aug. 2011, doi: 10.1534/genetics.111.131433.
G. Wang, “Genome Editing for Cystic Fibrosis,” Cells, vol. 12, no. 12, p. 1555, Jun. 2023, doi: 10.3390/cells12121555.
G. Maule, D. Arosio, and A. Cereseto, “Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing,” Int J Mol Sci, vol. 21, no. 11, p. 3903, May 2020, doi: 10.3390/ijms21113903.
E. A. Knapp et al., “The Cystic Fibrosis Foundation Patient Registry. Design and Methods of a National Observational Disease Registry.,” Ann Am Thorac Soc, vol. 13, no. 7, pp. 1173–9, Jul. 2016, doi: 10.1513/AnnalsATS.201511-781OC.
G. Schwank et al., “Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients,” Cell Stem Cell, vol. 13, no. 6, pp. 653–658, Dec. 2013, doi: 10.1016/j.stem.2013.11.002.
C. Graham and S. Hart, “CRISPR/Cas9 gene editing therapies for cystic fibrosis,” Expert Opin Biol Ther, vol. 21, no. 6, pp. 767–780, Jun. 2021, doi: 10.1080/14712598.2021.1869208.
M. Lotfi, A. E. Butler, V. N. Sukhorukov, and A. Sahebkar, “Application of CRISPR‐Cas9 technology in diabetes research,” Diabetic Medicine, vol. 41, no. 1, Jan. 2024, doi: 10.1111/dme.15240.
Y. Cheng, H. Wang, and M. Li, “The promise of CRISPR/Cas9 technology in diabetes mellitus therapy: How gene editing is revolutionizing diabetes research and treatment,” J Diabetes Complications, vol. 37, no. 8, p. 108524, Aug. 2023, doi: 10.1016/j.jdiacomp.2023.108524.
J. Bora et al., “A critical review on therapeutic approaches of CRISPR-Cas9 in diabetes mellitus,” Naunyn Schmiedebergs Arch Pharmacol, vol. 396, no. 12, pp. 3459–3481, Dec. 2023, doi: 10.1007/s00210-023-02631-1.
F. A. Khan et al., “CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases,” Oncotarget, vol. 7, no. 32, pp. 52541–52552, Aug. 2016, doi: 10.18632/oncotarget.9646.
M. Chen, A. Mao, M. Xu, Q. Weng, J. Mao, and J. Ji, “CRISPR-Cas9 for cancer therapy: Opportunities and challenges,” Cancer Lett, vol. 447, pp. 48–55, Apr. 2019, doi: 10.1016/j.canlet.2019.01.017.
X. Cheng, S. Fan, C. Wen, and X. Du, “CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges,” Brief Funct Genomics, vol. 19, no. 3, pp. 209–214, May 2020, doi: 10.1093/bfgp/elaa001.
M. Hussein, M. A. Molina, B. Berkhout, and E. Herrera-Carrillo, “A CRISPR-Cas Cure for HIV/AIDS,” Int J Mol Sci, vol. 24, no. 2, p. 1563, Jan. 2023, doi: 10.3390/ijms24021563.
T. E. Gurrola, S. N. Effah, I. K. Sariyer, W. Dampier, M. R. Nonnemacher, and B. Wigdahl, “Delivering CRISPR to the HIV-1 reservoirs,” Front Microbiol, vol. 15, May 2024, doi: 10.3389/fmicb.2024.1393974.
Z. Zhang, W. Hou, and S. Chen, “Updates on CRISPR-based gene editing in HIV-1/AIDS therapy,” Virol Sin, vol. 37, no. 1, pp. 1–10, Feb. 2022, doi: 10.1016/j.virs.2022.01.017.
A. J. Atkins, A. G. Allen, W. Dampier, E. K. Haddad, M. R. Nonnemacher, and B. Wigdahl, “HIV-1 cure strategies: why CRISPR?,” Expert Opin Biol Ther, vol. 21, no. 6, pp. 781–793, Jun. 2021, doi: 10.1080/14712598.2021.1865302.
Q. Xiao, D. Guo, and S. Chen, “Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy,” Front Cell Infect Microbiol, vol. 9, Mar. 2019, doi: 10.3389/fcimb.2019.00069.
C. S. Binda, B. Klaver, B. Berkhout, and A. T. Das, “CRISPR-Cas9 Dual-gRNA Attack Causes Mutation, Excision and Inversion of the HIV-1 Proviral DNA,” Viruses, vol. 12, no. 3, p. 330, Mar. 2020, doi: 10.3390/v12030330.
B. Jordan, “Thérapie génique germinale, le retour ?,” médecine/sciences, vol. 31, no. 6–7, pp. 691–695, Jun. 2015, doi: 10.1051/medsci/20153106025.
B. Bekaert, A. Boel, G. Cosemans, L. De Witte, B. Menten, and B. Heindryckx, “CRISPR/Cas gene editing in the human germline,” Semin Cell Dev Biol, vol. 131, pp. 93–107, Nov. 2022, doi: 10.1016/j.semcdb.2022.03.012.
K. E. Ormond et al., “Human Germline Genome Editing,” The American Journal of Human Genetics, vol. 101, no. 2, pp. 167–176, Aug. 2017, doi: 10.1016/j.ajhg.2017.06.012.
S. Dilip Kumar, M. Aashabharathi, G. KarthigaDevi, R. Subbaiya, and M. Saravanan, “Insights of CRISPR-Cas systems in stem cells: progress in regenerative medicine,” Mol Biol Rep, vol. 49, no. 1, pp. 657–673, Jan. 2022, doi: 10.1007/s11033-021-06832-w.
A. M. Antao, J. K. Karapurkar, D. R. Lee, K.-S. Kim, and S. Ramakrishna, “Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems,” Comput Struct Biotechnol J, vol. 18, pp. 3649–3665, 2020, doi: 10.1016/j.csbj.2020.11.026.
J. Deinsberger, D. Reisinger, and B. Weber, “Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis,” NPJ Regen Med, vol. 5, no. 1, p. 15, Sep. 2020, doi: 10.1038/s41536-020-00100-4.
C. Guo, X. Ma, F. Gao, and Y. Guo, “Off-target effects in CRISPR/Cas9 gene editing,” Front Bioeng Biotechnol, vol. 11, Mar. 2023, doi: 10.3389/fbioe.2023.1143157.
M. Pacesa et al., “Structural basis for Cas9 off-target activity,” Cell, vol. 185, no. 22, pp. 4067-4081.e21, Oct. 2022, doi: 10.1016/j.cell.2022.09.026.
J. Li, S. Hong, W. Chen, E. Zuo, and H. Yang, “Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing,” Journal of Genetics and Genomics, vol. 46, no. 11, pp. 513–521, Nov. 2019, doi: 10.1016/j.jgg.2019.11.002.
S.-J. Chen, “Minimizing off-target effects in CRISPR-Cas9 genome editing,” Cell Biol Toxicol, vol. 35, no. 5, pp. 399–401, Oct. 2019, doi: 10.1007/s10565-019-09486-4.
S. Q. Tsai et al., “Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing,” Nat Biotechnol, vol. 32, no. 6, pp. 569–576, Jun. 2014, doi: 10.1038/nbt.2908.
F. A. Ran et al., “Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity,” Cell, vol. 154, no. 6, pp. 1380–1389, Sep. 2013, doi: 10.1016/j.cell.2013.08.021.
Y. Fu, J. D. Sander, D. Reyon, V. M. Cascio, and J. K. Joung, “Improving CRISPR-Cas nuclease specificity using truncated guide RNAs,” Nat Biotechnol, vol. 32, no. 3, pp. 279–284, Mar. 2014, doi: 10.1038/nbt.2808.
C. Fage, N. Lemire, and S. Moineau, “Delivery of CRISPR-Cas systems using phage-based vectors,” Curr Opin Biotechnol, vol. 68, pp. 174–180, Apr. 2021, doi: 10.1016/j.copbio.2020.11.012.
J. R. Fagen, D. Collias, A. K. Singh, and C. L. Beisel, “Advancing the design and delivery of CRISPR antimicrobials,” Curr Opin Biomed Eng, vol. 4, pp. 57–64, Dec. 2017, doi: 10.1016/j.cobme.2017.10.001.
D. Wang, P. W. L. Tai, and G. Gao, “Adeno-associated virus vector as a platform for gene therapy delivery,” Nat Rev Drug Discov, vol. 18, no. 5, pp. 358–378, May 2019, doi: 10.1038/s41573-019-0012-9.
D. Wang, F. Zhang, and G. Gao, “CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors,” Cell, vol. 181, no. 1, pp. 136–150, Apr. 2020, doi: 10.1016/j.cell.2020.03.023.
Y. Wang et al., “Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy,” Gene, vol. 927, p. 148733, Nov. 2024, doi: 10.1016/j.gene.2024.148733.
V. J. Madigan et al., “The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction,” J Virol, vol. 94, no. 21, Oct. 2020, doi: 10.1128/JVI.01604-20.
P. Kazemian, S.-Y. Yu, S. B. Thomson, A. Birkenshaw, B. R. Leavitt, and C. J. D. Ross, “Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components,” Mol Pharm, vol. 19, no. 6, pp. 1669–1686, Jun. 2022, doi: 10.1021/acs.molpharmaceut.1c00916.
O. S. Fenton et al., “Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery,” Advanced Materials, vol. 28, no. 15, pp. 2939–2943, Apr. 2016, doi: 10.1002/adma.201505822.
P. S. Kowalski, A. Rudra, L. Miao, and D. G. Anderson, “Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery,” Molecular Therapy, vol. 27, no. 4, pp. 710–728, Apr. 2019, doi: 10.1016/j.ymthe.2019.02.012.
B. E. Givens, Y. W. Naguib, S. M. Geary, E. J. Devor, and A. K. Salem, “Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics,” AAPS J, vol. 20, no. 6, p. 108, Nov. 2018, doi: 10.1208/s12248-018-0267-9.
A. K. Hawkins and M. R. Hayden, “A grand challenge: Providing benefits of clinical genetics to those in need,” Genetics in Medicine, vol. 13, no. 3, pp. 197–200, Mar. 2011, doi: 10.1097/GIM.0b013e31820c056e.
B. S. Coller, “Ethics of Human Genome Editing,” Annu Rev Med, vol. 70, no. 1, pp. 289–305, Jan. 2019, doi: 10.1146/annurev-med-112717-094629.
F. Mayor, “The Universal Declaration on the Human Genome and Human Rights,” C R Biol, vol. 326, no. 10–11, pp. 1121–1125, Oct. 2003, doi: 10.1016/j.crvi.2003.09.017.
Fujun Li, “CRISPR/Cas9 Instantaneous Gene Editing Therapy to Intraocular Hypertensive POAG With MYOC Mutation,” https://clinicaltrials.gov/study/NCT06465537?intr=CRISPR%2FCas9&aggFilters=status:rec&rank=2.
C. A. Chamberlain, E. P. Bennett, A. H. Kverneland, I. M. Svane, M. Donia, and Ö. Met, “Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy,” Mol Ther Oncolytics, vol. 24, pp. 417–428, Mar. 2022, doi: 10.1016/j.omto.2022.01.004.
“Jahrestagung der Deutschen, Österreichischen und Schweizerischen Gesellschaften für Hämatologie und Medizinische Onkologie, 11. bis 14. Oktober 2024, Basel,” Oncol Res Treat, vol. 47, no. Suppl. 2, pp. 11–354, Oct. 2024, doi: 10.1159/000540557.
Opublikowane
Licencja

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.