Wybrane aspekty nowoczesnego leczenia farmakologicznego i inwazyjnego w chorobie wieńcowej z uwzględnieniem diagnostyki

Autorzy

Anna Krakowczyk-Bedoui
Anna Krakowczyk1, Eliza Barczyk2, Joanna Bączyk2, Wojciech Dobczyński2, Katarzyna Grudnik2, Dariusz Kucias2 Studenckie Koło Naukowe im. Zbigniewa Religii przy Katedrze Biofizyki w Zabrzu, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Marta Tworuszka
Daria Gliwa
Joanna Bączyk

Słowa kluczowe:

choroba niedokrwienna serca, nanotechnologia, ultrasonografia

Streszczenie

Abstrakt: Pomimo znacznych postępów w metodach diagnostycznych oraz strategiach terapeutycznych wykorzystywanych w analizie medycznej na przestrzeni ostatniej dekady, choroba wieńcowa ang. (Coronary artery disease, CAD)  pozostaje główną przyczyną zgonów na świecie. W ostatnich latach zostały opracowane nowoczesne strategie terapeutyczne z wykorzystaniem nanotechnologii i chirurgii robotycznej. Dynamiczny rozwój bioinżynierii doprowadził do powstania zaawansowanych technik diagnostycznych, nieinwazyjnych metod obrazowania, które umożliwiły precyzyjną diagnostykę CAD, a także dokładną wizualizację naczyń wieńcowych. Celem pracy jest przegląd najnowszych osiągnięć naukowych w zakresie metod diagnostycznych i leczenia CAD z perspektywy obrazowania wewnątrznaczyniowego lub oceny fizjologicznej naczyń wieńcowych. Ewolucja leczenia CAD obejmuje nowoczesne metody diagnostyczne, najnowocześniejsze terapie farmakologiczne, procedury inwazyjne, modyfikacje stylu życia i kompleksową rehabilitację kardiologiczną. Badania naukowe nieustannie wytyczają nowe ścieżki w leczeniu CAD, począwszy od innowacyjnych leków modulujących funkcje płytek krwi i obniżających poziom lipidów poprzez inwazyjne leczenie CAD, zwłaszcza w zakresie konstrukcji stentów wieńcowych. Nowe technologie diagnostyczne i terapeutyczne pozwalają również na precyzyjną ocenę morfologii i funkcji naczyń wieńcowych, umożliwiając bardziej spersonalizowane podejście do leczenia zmian miażdżycowych i ograniczenia ryzyka powikłań sercowo- naczyniowych.

Słowa kluczowe: choroba wieńcowa, ultrasonografia wewnątrznaczyniowa, nanotechnologia

Abstract: Despite significant progress in diagnostic methods and therapeutic strategies used in medical analysis over the past decade, coronary artery disease (CAD) remains the leading cause of death worldwide. In recent years, modern therapeutic strategies have been developed using nanotechnology and robotic surgery. The dynamic development of bioengineering led to the creation of advanced diagnostic techniques, noninvasive imaging methods that have enabled to precise CAD diagnosis, as well as accurate visualization of coronary vessels. The aim of this article is to review the latest scientific achievements in the field of CAD diagnostic methods and treatment from the perspective of intravascular imaging or physiological assessment of coronary vessels. The evolution of CAD treatment includes modern diagnostic methods, state-of-the-art pharmacological therapies, invasive procedures, lifestyle modifications, and comprehensive cardiac rehabilitation. Research continues to pave new paths in the treatment of CAD, from innovative drugs that modulate platelet function and lower lipid levels to invasive CAD treatment, especially in the field of coronary stent construction. New diagnostic and therapeutic technologies enable precise assessment of the morphology and function of coronary arteries, which allows for a more personalized approach to the treatment of atherosclerotic lesions and reduces the risk of cardiovascular complications.

Keywords: coronary artery disease, intravascular ultrasonography, nanotechnology

Bibliografia

Shahjehan RD, Bhutta BS. Coronary Artery Disease. [Updated 2023 Aug 17]. In: StatPearls TreasureIsland(FL):StatPearlsPublishing;2024Janwww.ncbi.nlm.nih.gov/books/NBK564304/[Pub Med.][Google Scholar]

Tsao C.W., Aday A.W., Almarzooq Z.I., Alonso A., Beaton A.Z., Bittencourt M.S., Boehme A.K., Buxton A.E., Carson A.P., Commodore-Mensah Y., et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation. 2022;145:e153–e639. doi: 10.1161/CIR.0000000000001052. [PubMed] [Google Scholar]

NFZ o zdrowiu. Choroba niedokrwienna serca. Raport z 2020. Raport został zaktualizowany w 2022 roku o dane za lata 2020-2021 Centrala Narodowego Funduszu ZdrowiaDepartament Analiz i InnowacjiISBN: 978-83-956980-2-6

F. L. J. Visseren et al., “2021 ESC Guidelines on cardiovascular disease prevention in clinical practiceDeveloped by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC), „ Eur Heart J, vol. 42, no. 34, pp. 3227–3337, Sep. 2021, doi: 10.1093/EURHEARTJ/EHAB484.

Yock P.G., Linker D.T., Angelsen B.A. Two-dimensional intravascular ultrasound: Technical development and initial clinical experience. J. Am. Soc. Echocardiogr. 1989;2:296–304. doi: 10.1016/S0894-7317(89) 80090-2. [PubMed] [Google Scholar]

Peng C., Wu H., Kim S., Dai X., Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. Sensors. 2021;21:3540. doi: 10.3390/s21103540 [PubMed]

Koganti, S.; Kotecha, T.; Rakhit, R.D. Choice of intracoronary imaging: When to use intravascular ultrasound or optical coherence tomography. Interv. Cardiol. Rev. 2016, 11, 11. [Google Scholar] [CrossRef]

Schoenhagen, P.; Nissen, S. Understanding coronary artery disease: Tomographic imaging with intravascular ultrasound. Heart 2002, 88, 91–96. [Google Scholar] [CrossRef] [PubMed] ]

Jakabcin, J.Spacek, R. Bystron, M. Kvasnak, M. Jager, J. Veselka, J. Kala, P. Cervinka, P. Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter. Cardiovasc. Interv. 2010, 75, 578–583. [Google Scholar] [CrossRef] [PubMed]

Hong S.J., Mintz G.S., Ahn C.M., Kim J.S., Kim B.K., Ko Y.G., Kang T.S., Kang W.C., Kim Y.H., Hur S.H., et al. Effect of Intravascular Ultrasound-Guided Drug-Eluting Stent Implantation: 5-Year Follow-Up of the IVUS-XPL Randomized Trial. JACC Cardiovasc. Interv. 2020;13:62–71. doi: 10.1016/j.jcin.2019.09.033.[PubMed] [Google Scholar]

Gao X., Ge Z., Kong X.-Q., Kan J., Han L., Lu S., Tian N.-L., Lin S., Lu Q.-H., Wang Z.-Y., et al. 3-Year Outcomes of the ULTIMATE Trial Comparing Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation. J. Am. Coll. Cardiol. Cardiovasc. Interv. 2021;14:247–257. doi: 10.1016/j.jcin.2020.10.001[PubMed] [Google Scholar]

Erlinge D., Maehara A., Ben-Yehuda O., Bøtker H.E., Maeng M., Kjøller-Hansen L., Engstrøm T., Matsumura M., Crowley A., Dressler O., et al. mIdentification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): A prospective natural history study. Lancet. 2021;397:985–995. doi: 10.1016/S0140-6736(21) 00249-X [PubMed] [Google Scholar].

Ono M., Kawashima H., Hara H., Gao C., Wang R., Kogame N., Takahashi K., Chichareon P., Modolo R., Tomaniak M., et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front. Cardiovasc. Med. 2020;7:119. doi: 10.3389/fcvm.2020.00119. Erratum in Front. Cardiovasc. Med. 2020, 7, 594899 [PubMed] [Google Scholar]

Ali Z.A., Karimi Galougahi K., Maehara A., Shlofmitz R.A., Ben-Yehuda O., Mintz G.S., Stone G.W. Intracoronary Optical Coherence Tomography 2018: Current Status and Future Directions. JACC Cardiovasc. Interv. 2017;10:2473–2487. doi: 10.1016/j.jcin.2017.09.042[PubMed] [Google Scholar]

Bech G.J., De Bruyne B., Pijls N.H., de Muinck E.D., Hoorntje J.C., Escaned J., Stella P.R., Boersma E., Bartunek J., Koolen J.J., et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: A randomized trial. Circulation. 2001;103:2928–2934. doi: 10.1161/01.CIR.103.24.2928 [PubMed] [Google Scholar]

Pijls N.H., De Bruyne B., Peels K., Van Der Voort P.H., Bonnier H.J., Bartunek J., Koolen J.J., Koolen J.J. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 1996;334:1703–1708. doi: 10.1056/NEJM199606273342604 [PubMed] [Google Scholar]

Fearon W.F., Zimmermann F.M., De Bruyne B., Piroth Z., van Straten A.H.M., Szekely L., Davidavičius G., Kalinauskas G., Mansour S., Kharbanda R., et al. Fractional Flow Reserve-Guided PCI as Compared with Coronary Bypass Surgery. N. Engl. J. Med. 2022;386:128–137. doi: 10.1056/NEJMoa2112299 [PubMed] [Google Scholar]

Lee J.H., Hartaigh B.Ó., Han D., Rizvi A., Lin F.Y., Min J.K. Fractional Flow Reserve Measurement by Computed Tomography: An Alternative to the Stress Test. Interv. Cardiol. Rev. 2016;11:105–109. doi: 10.15420/icr.2016:1:2 [PubMed] [Google Scholar]

Nørgaard B.L., Leipsic J., Gaur S., Seneviratne S., Ko B.S., Ito H., Jensen J.M., Mauri L., De Bruyne B., Bezerra H., et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) J. Am. Coll. Cardiol. 2014;63:1145–1155. doi: 10.1016/j.jacc.2013.11.043 [PubMed] [Google Scholar

Götberg M., Christiansen E.H., Gudmundsdottir I.J., Sandhall L., Danielewicz M., Jakobsen L., Olsson S.E., Öhagen P., Olsson H., Omerovic E., et al. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI. N. Engl. J. Med. 2017;376:1813–1823. doi: 10.1056/NEJMoa1616540 [PubMed] [Google Scholar]

Johnson N.P., Jeremias A., Zimmermann F.M., Adjedj J., Witt N., Hennigan B., Koo B.-K., Maehara A., Matsunura M., Barbato E., et al. Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment. JACC Cardiovasc. Interv. 2016;9:757–767. doi: 10.1016/j.jcin.2015.12.273 [PubMed] Google Scholar]

Sen S., Asress K.N., Nijjer S., Petraco R., Malik I.S., Foale R.A., Mikhail G.W., Foin N., Broyd C., Hadjiloizou N., et al. Diagnostic classification of the instantaneous wave-free ratio is equivalent to fractional flow reserve and is not improved with adenosine administration. Results of CLARIFY (Classification Accuracy of Pressure-Only Ratios Against Indices Using Flow Study) J. Am. Coll. Cardiol. 2013;61:1409–1420. doi: 10.1016/j.jacc.2013.01.034[PubMed] [Google Scholar]

Takx R.A., Blomberg B.A., El Aidi H., Habets J., de Jong P.A., Nagel E., Hoffmann U., Leiner T. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ. Cardiovasc. Imaging. 2015;8:e002666. doi: 10.1161/CIRCIMAGING.114.002666 [PubMed] [Google Scholar]

Antiochos P., Ge Y., Steel K., Chen Y.Y., Bingham S., Abdullah S., Mikolich J.R., Arai A.E., Bandettini W.P., Patel A.R., et al. Evaluation of Stress Cardiac Magnetic Resonance Imaging in Risk Reclassification of Patients with Suspected Coronary Artery Disease. JAMA Cardiol. 2020;5:1401–1409. doi: 10.1001/jamacardio.2020.2834 [PubMed] [Google Scholar]

Ferreira V.M., Piechnik S.K., Dall’Armellina E., Karamitsos T.D., Francis J.M., Choudhury R.P., Friedrich M.G., Robson M.D., Neubauer S. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: A comparison to T2-weighted cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2012;14:42. doi: 10.1186/1532-429X-14-42[PubMed] [Google Scholar]

Antonopoulos A.S., Sanna F., Sabharwal N., Thomas S., Oikonomou E.K., Herdman L., Margaritis M., Shirodaria C., Kampoli A.M., Akoumianakis I., et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017;9:eaal2658. doi: 10.1126/scitranslmed.aal2658 [PubMed] [Google Scholar]

Sun J.T., Sheng X.C., Feng Q., Yin Y., Li Z., Ding S., Pu J. Pericoronary Fat Attenuation Index Is Associated with Vulnerable Plaque Components and Local Immune-Inflammatory Activation in Patients with Non-ST Elevation Acute Coronary Syndrome. J. Am. Heart Assoc. 2022;11:e022879. doi: 10.1161/JAHA.121.022879 [PubMed] [Google Scholar]

Joly AL, Seitz C, Liu S, Kuznetsov NV, Gertow K, Westerberg LS, Paulsson‐Berne G, Hansson GK, Andersson J. Alternative splicing of foxp3 controls regulatory T cell effector functions and is associated with human atherosclerotic plaque stability. Circ Res. 2018;122:1385–1394. doi.10.1161/CIRCRESAHA.117.312340 [PubMed][ Google Scholar]

George J, Schwartzenberg S, Medvedovsky D, Jonas M, Charach G, Afek A, Shamiss A. Regulatory T cells and il‐10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis. 2012;222:519–523. doi.org/10.1016/j.atherosclerosis.2012.03.016 [PubMed][ Google Scholar]

Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124:315–327. doi.org/10.1161/CIRCRESAHA.118.313591 [PubMed ][Google Scholar]

Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, Margaritis M, Shirodaria C, Kampoli A‐M, Akoumianakis I, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9. doi.org/10.1126/scitranslmed.aal2658[Pub Med][Google Scholar]

Elnabawi YA, Oikonomou EK, Dey AK, Mancio J, Rodante JA, Aksentijevich M, Choi H, Keel A, Erb‐Alvarez J, Teague HL, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index. JAMA Cardiol. 2019;4:885–891. doi.10.1001/jamacardio.2019.2589 [PubMed][ Google Scholar]

Pinderski Oslund LJ, Hedrick CC, Olvera T, Hagenbaugh A, Territo M, Berliner JA, Fyfe AI. Interleukin‐10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol. 1999;19:2847–2853. doi. /10.1161/01.ATV.19.12.2847 [PubMed] [Google Scholar]

Battes LC, Cheng JM, Oemrawsingh RM, Boersma E, Garcia‐Garcia HM, de Boer SPM, Buljubasic N, Mieghem NAV, Regar E, Geuns R‐J, et al. Circulating cytokines in relation to the extent and composition of coronary atherosclerosis: results from the ATHEROREMO‐IVUS study. Atherosclerosis. 2014;236:18–24. doi.10.1016/j.atherosclerosis.2014.06.010[ PubMed][Google Scholar]

Dai X, Deng J, Yu M, Lu Z, Shen C, Zhang J. Perivascular fat attenuation index and high‐risk plaque features evaluated by coronary CT angiography: relationship with serum inflammatory marker level. Int J Cardiovasc Imaging. 2020;36:723–730. doi. 0.1007/s10554-019-01758-8 [PubMed][ Google Scholar]

Lluberas N, Trías N, Brugnini A, Mila R, Vignolo G, Trujillo P, Durán A, Grille S, Lluberas R, Lens D. Lymphocyte subpopulations in myocardial infarction: a comparison between peripheral and intracoronary blood. SpringerPlus. 2015;4:744. doi.10.1186/s40064-015-1532-3 [PubMed][Google Scholar]

Milluzzo R.P., Franchina G.A., Capodanno D., Angiolillo D.J. Selatogrel, a novel P2Y12 inhibitor: A review of the pharmacology and clinical development. Expert Opin. Investig. Drugs. 2020;29:537–546. doi: 10.1080/13543784.2020.1764533.[PubMed] [Google Scholar]

Beavers C.J., Effoe S.A., Dobesh P.P. Selatogrel: A Novel Subcutaneous P2Y12 Inhibitor. J. Cardiovasc. Pharmacol. 2022;79:161–167. doi: 10.1097/FJC.0000000000001079[PubMed] [Google Scholar]

Sinnaeve P., Fahrni G., Schelfaut D., Spirito A., Mueller C., Frenoux J.-M., Hmissi A., Bernaud C., Ufer M., Moccetti T., et al. Subcutaneous Selatogrel Inhibits Platelet Aggregation in Patients With Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2020;75:2588–2597. doi: 10.1016/j.jacc.2020.03.059[PubMed] [Google Scholar]

Storey R.F., Gurbel P.A., Ten Berg J., Beranud C., Dangas G.D., Frenoux J.-M., Gorog D.A., Hmissi A., Kunadian V., James S.K., et al. Pharmacodynamics, pharmacokinetics, and safety of single-dose subcutaneous administration of selatogrel, a novel P2Y12 receptor antagonist, in patients with chronic coronary syndromes. Eur. Heart J. 2020;41:3132–3140. doi: 10.1093/eurheartj/ehz807[PubMed] [Google Scholar]

Mega J.L., Braunwald E., Wiviott S.D., Bassand J.P., Bhatt D.L., Bode C., Burton P., Cohen M., Cook-Bruns N., Fox K.A., et al. Rivaroxaban in patients with a recent acute coronary syndrome. N. Engl. J. Med. 2012;366:9–19. doi: 10.1056/NEJMoa1112277. [ [PubMed] [Google Scholar]

Eikelboom J.W., Connolly S.J., Bosch J., Dagenais G.R., Hart R.G., Shestakovska O., Diaz R., Alings M., Lonn E.M., Anand S.S., et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 2017;377:1319–1330. doi: 10.1056/NEJMoa1709118. [PubMed] [Google Scholar]

Naito R., Miyauchi K., Yasuda S., Kaikita K., Akao M., Ako J., Matoba T., Nakamura M., Hagiwara N., Kimura K., et al. Rivaroxaban Monotherapy vs Combination Therapy With Antiplatelets on Total Thrombotic and Bleeding Events in Atrial Fibrillation With Stable Coronary Artery Disease: A Post Hoc Secondary Analysis of the AFIRE Trial. JAMA Cardiol. 2022;7:787–794. doi: 10.1001/jamacardio.2022.1561. [PubMed] [Google Scholar]

Dasgeb B., Kornreich D., McGuinn K., Okon L., Brownell I., Sackett D.L. Colchicine: An ancient drug with novel applications. Br. J. Dermatol. 2018;178:350–356. doi: 10.1111/bjd.15896[PubMed] [Google Scholar]

Chen K., Schenone A.L., Borges N., Militello M., Menon V. Teaching an old dog new tricks: Colchicine in cardiovascular medicine. Am. J. Cardiovasc. Drugs. 2017;17:347–360. doi: 10.1007/s40256-017-0226-3 [PubMed] [Google Scholar]

Imazio M., Gaita F. Colchicine for cardiovascular medicine. Future Cardiol. 2016;12:9–16. doi: 10.2217/fca.15.59. [PubMed] [Google Scholar]

Olsen A.M., Fosbøl E.L., Lindhardsen J., Folke F., Charlot M., Selmer C., Bjerring Olesen J., Lamberts M., Ruwald M.H., Køber L., et al. Long-Term cardiovascular risk of nonsteroidal anti-inflammatory drug use according to time passed after first-time myocardial infarction: A nationwide cohort study. Circulation. 2012;126:1955–1963.doi: 10.1161/CIRCULATIONAHA.112.112607[PubMed] [Google Scholar]

Vogel R.A., Forrester J.S. Cooling off hot hearts: A specific therapy for vulnerable plaque? J. Am. Coll. Cardiol. 2013;61:411–412. doi: 10.1016/j.jacc.2012.10.026[PubMed] [Google Scholar]

Giugliano G.R., Giugliano R.P., Gibson C.M., Kuntz R.E. Meta-Analysis of corticosteroid treatment in acute myocardial infarction. Am. J. Cardiol. 2003;91:1055–1059. doi: 10.1016/S0002-9149(03)00148-6[PubMed] [Google Scholar]

Harrison RW.Newbi K.Rivaroxaban in Acute Coronary Syndromes J.Am.Heart.Assoc.2019 Feb28.8(5)doi10.1161/JAHA.119.012014/[PubMed] [Google Scholar]

Doshi N., Prabhakarpandian B., Rea-Ramsey A., Pant K., Sundaram S., Mitragotri S. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J. Control. Release. 2010;146:196–200.doi: 10.1016/j.jconrel.2010.04.007 [PubMed] [Google Scholar]

Karimi M., Zare H., Bakhshian Nik A., Yazdani N., Hamrang M., Mohamed E., Sahandi Zangabad P., Moosavi Basri S.M., Bakhtiari L., Hamblin M.R. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine. 2016;11:513–530. doi: 10.2217/nnm.16.3. [PubMed] [Google Scholar]

Srinivasan R., Marchant R.E., Gupta A.S. In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J. Biomed. Mater. Res. Part A. 2010;93:1004–1015. doi: 10.1002/jbm.a.32549[PubMed] [Google Scholar]

Flores A.M., Ye J., Jarr K.U., Hosseini-Nassab N., Smith B.R., Leeper N.J. Nanoparticle Therapy for Vascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2019;39:635–646.doi: 10.1161/ATVBAHA.118.311569. [PubMed] [Google Scholar]

Lewis D.R., Kamisoglu K., York A.W., Moghe P.V. Polymer-based therapeutics: Nanoassemblies and nanoparticles future for management of atherosclerosis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011;3:400–420. doi: 10.1002/wnan.145[PubMed] [Google Scholar]

Joo J.N.H., Nam S.H., Nam S.H., Baek I., Park J.-S. Thermal process for enhancing mechanical strength of PLGA nanoparticle layers on coronary stents. Bull. Korean Chem. Soc. 2009;30:1985–1988. [Google Scholar]

Javan R., Herrin D., Tangestanipoor A. Understanding spatially complex segmental and branch anatomy using 3D printing: Liver, lung, prostate, coronary arteries, and circle of Willis. Acad. Radiol. 2016;23:1183–1189. doi: 10.1016/j.acra.2016.04.010. [PubMed] [Google Scholar]

Xiong G., Kolli K., Soohoo H.A., Min J.K. In-vitro assessment of coronary hemodynamics in 3D printed patient-specific geometry. Circulation. 2015;132:19898.doi: 10.1161/circ.132.suppl_3.19898[Google Scholar]

Schmauss D., Haeberle S., Hagl C., Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: A single-centre experience. Eur. J. Cardiothorac. Surg. 2015;47:1044–1052. doi: 10.1093/ejcts/ezu310. [PubMed] [Google Scholar]

Kolli K.K., Min J.K., Ha S., Soohoo H., Xiong G. Effect of varying hemodynamic and vascular conditions on fractional flow reserve: An in vitro study. J. Am. Heart Assoc. 2016;5:e003634. doi: 10.1161/JAHA.116.003634. [PubMed] [Google Scholar]

Maor E., Eleid M.F., Gulati R., Lerman A., Sandhu G.S. Current and future use of robotic devices to perform percutaneous coronary interventions: A review. J. Am. Heart Assoc. 2017;6:e006239. doi: 10.1161/JAHA.117.006239 [PubMed] [Google Scholar]

Weisz G., Metzger D.C., Caputo R.P., Delgado J.A., Marshall J.J., Vetrovec G.W., Reisman M., Waksman R., Granada J.F., Novack V., et al. Safety and feasibility of robotic percutaneous coronary intervention PRECISE (percutaneous robotically-enhanced coronary intervention) study. J. Am. Coll. Cardiol. 2013;61:1596–1600. doi: 10.1016/j.jacc.2012.12.045.[PubMed] [Google Scholar]

Mahmud E., Naghi J., Ang L., Harrison J., Behnamfar O., Pourdjabbar A., Reeves R., Patel M. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: Results of the CORA-PCI study (Complex Robotically Assisted Percutaneous Coronary Intervention) JACC Cardiovasc. Interv. 2017;10:1320–1327. doi: 10.1016/j.jcin.2017.03.050[PubMed] [Google Scholar]

Madder R.D., VanOosterhout S.M., Jacoby M.E., Collins J.S., Borgman A.S., Mulder A.N., Elmore M.A., Campbell J.L., McNamara R.F., Wohns D.H. Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: An early exploration into the feasibility of telestenting (the REMOTE-PCI study) EuroIntervention. 2017;12:1569–1576. doi:10.4244/EIJ-D-16-00363[PubMed] [Google Scholar]

Madder R.D., VanOosterhout S., Mulder A., Bush J., Martin S., Rash A., Tan J.M., Parker J., Li Y., Kottenstette N., et al. Feasibility of robotic telestenting over long geographic distances a pre-clinical ex vivo and in vivo study. EuroIntervention. 2019;15:e510–e512. doi: 10.4244/EIJ-D-19-00106. [PubMed] [Google Scholar]

Mori S., Yasuda S., Kataoka Y., Morii I., Kawamura A., Miyazaki S. Significant association of coronary artery calcification in stent delivery route with restenosis after sirolimus-eluting stent implantation. Circ. J. 2009;73:1856–1863. doi: 10.1253/circj.CJ-09-0080[PubMed] [Google Scholar]

Wiemer M., Butz T., Schmidt W., Schmitz K.P., Horstkotte D., Langer C. Scanning electron microscopic analysis of different drug eluting stents after failed implantation: From nearly undamaged to major damaged polymers. Catheter Cardiovasc. Interv. 2010;75:905–911.doi: 10.1002/ccd.22347[PubMed] [Google Scholar]

Joo J.N.H., Nam S.H., Nam S.H., Baek I., Park J.-S. Thermal process for enhancing mechanical strength of PLGA nanoparticle layers on coronary stents. Bull. Korean Chem. Soc. 2009;30:1985–1988 [Google Scholar]

Opublikowane

28 sierpnia 2025