Sztuczna inteligencja w triażu i pracy oddziałów ratunkowych – przegląd zastosowań i skutków wdrożeń
Keywords:
sztuczna inteligencja, oddział ratunkowy, triażSynopsis
Sztuczna inteligencja (ang. artificial intelligence, AI) znajduje coraz szersze zastosowanie w pracy szpitalnych oddziałów ratunkowych (ang. emergency department, ED). Oferuje wsparcie w zakresie analizy danych klinicznych, przewidywania ryzyka oraz podejmowania decyzji medycznych i organizacyjnych. Celem niniejszego rozdziału jest omówienie aktualnych możliwości wykorzystania AI w pracy oddziałów ratunkowych, ze szczególnym uwzględnieniem procesów triażu, zarządzania przepływem pacjentów oraz wspomagania decyzji klinicznych. W pracy przedstawiono przykłady zastosowań takich jak automatyczna klasyfikacja pacjentów, predykcja pogorszenia stanu zdrowia oraz zarządzanie obciążeniem. Wskazano również ograniczenia tych rozwiązań, w tym problemy związane z jakością danych, brakiem przejrzystości algorytmów czy wyzwaniami etycznymi. Rozdział stanowi przegląd najnowszych badań i wdrożeń oraz wskazuje kierunki dalszego rozwoju sztucznej inteligencji w środowisku szpitalnym. Analiza opiera się na literaturze dostępnej w bazach PubMed, Scopus oraz Google Scholar, obejmującej aktualne badania nad zastosowaniem AI w medycynie ratunkowej.
Artificial intelligence (AI) is increasingly being applied in hospital emergency departments. It supports the analysis of clinical data, risk prediction, and both medical and administrative decision-making. The aim of this chapter is to explore current opportunities for the use of AI in emergency care, with a focus on triage, patient flow management, and clinical decision support. The chapter presents examples such as automated patient classification, prediction of clinical deterioration, and workload optimization. It also addresses the limitations of these tools, including data quality issues, lack of algorithmic transparency, and ethical challenges.This chapter provides an overview of the latest research and implementations, highlighting future directions for the development of artificial intelligence in the hospital setting. The analysis is based on literature available in databases such as PubMed, Scopus, and Google Scholar, covering current studies on the application of AI in emergency medicine.
References
Aringhieri R, Bruni ME, Khodaparasti S, van Essen JT. Emergency medical services and beyond: Addressing new challenges through a wide literature review. Computers & Operations Research. 2017;78:349-368.
Salway RJ, Valenzuela R, Shoenberger JM, Mallon WK, Viccellio A. Emergency department (ED) overcrowding: evidence-based answers to frequently asked questions. Revista Médica Clínica Las Condes. 2017;28(2):213-219. doi:10.1016/j.rmclc.2017.04.008
Zakeri H, Afshari Saleh L, Niroumand S, Ziadi-Lotfabadi M. Comparison the Emergency Severity Index and Manchester Triage System in trauma patients. Bulletin of Emergency and Trauma. 2022;10(2):65-70. doi:10.30476/BEAT.2022.92297.1302. PMID:35434164; PMCID:PMC9008340.
Wulp I, van Baar ME, Schrijvers AJ. Reliability and validity of the Manchester Triage System in a general emergency department patient population in the Netherlands: results of a simulation study. Emergency Medicine Journal. 2008;25(7):431-434. doi:10.1136/emj.2007.055228
El Arab RA, Al Moosa OA. The role of AI in emergency department triage: an integrative systematic review. Intensive and Critical Care Nursing. 2025;89:104058. doi:10.1016/j.iccn.2025.104058
Porto BM. Improving triage performance in emergency departments using machine learning and natural language processing: a systematic review. BMC Emergency Medicine. 2024;24(1):219. doi:10.1186/s12873-024-01135-2. PMID:39558255; PMCID:PMC11575054.
Abdalhalim AZA, Ahmed SNN, Ezzelarab AMD, et al. Clinical impact of artificial intelligence-based triage systems in emergency departments: a systematic review. Cureus. 2025;17(6):e85667. doi:10.7759/cureus.85667
Friedman AB, Delgado MK, Weissman GE. Artificial intelligence for emergency care triage – much promise, but still much to learn. JAMA Network Open. 2024;7(5):e248857. doi:10.1001/jamanetworkopen.2024.8857. PMID:38713470.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. doi:10.1038/nature14539
Haug CJ, Drazen JM. Artificial Intelligence and Machine Learning in Clinical Medicine. N Engl J Med.2023;388(13):1201–1208
Anderson PG, Tarder-Stoll H, Alpaslan M, et al. Deep learning improves physician accuracy in the comprehensive detection of abnormalities on chest X-rays. Sci Rep. 2024;14:25151. doi:10.1038/s41598-024-76608-2
Brossard C, Goetz C, Catoire P, Cipolat L, Guyeux C, Gil-Jardiné C, et al. Predicting emergency department admissions using a machine-learning algorithm: a proof of concept with retrospective study. Sci Rep. 2022;12:20756. doi:10.1038/s41598-022-25156-5
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
Bednarczyk L, Reichenpfader D, Gaudet-Blavignac C, et al. Scientific evidence for clinical text summarization using large language models: scoping review. J Med Internet Res. 2025;27:e68998.
Zachariasse JM, Seiger N, Rood PPM, et al. Validity of emergency department triage systems: a systematic review. BMJ Open. 2019;9(3):e026471.
Travers DA, Waller AE, Katznelson J, Agans R. Reliability and validity of the Emergency Severity Index for pediatric triage. Acad Emerg Med. 2009;16(9):843–9.
Gilboy N, Tanabe P, Travers D, Rosenau AM. Emergency Severity Index (ESI): A Triage Tool for Emergency Department Care, Version 4. Rockville, MD: Agency for Healthcare Research and Quality; 2012.
Pouraghaei M, Mokhtari M, Moarref P, et al. Evaluation of the validity of the Emergency Severity Index (ESI) and nurse-physician triage agreement in an emergency department. BMC Emerg Med. 2023;23:16.
Beveridge R, Ducharme J, Janes L, Beaulieu S, Walter S. Reliability of the Canadian Emergency Department Triage and Acuity Scale: interrater agreement. Ann Emerg Med. 1999;34(2):155–159.
Hinson JS, Martinez DA, Cabral S, et al. Triage performance in emergency medicine: a systematic review. Ann Emerg Med. 2019;74(1):140‑152. doi:10.1016/j.annemergmed.2018.09.022
Ausserhofer D, Zaboli A, Pfeifer N, Solazzo P, Magnarelli G, Marsoner T, Siller M, Turcato G. Errors in nurse-led triage: An observational study. Int J Nurs Stud. 2021;113:103788. doi:10.1016/j.ijnurstu.2020.103788.
Pishkhani M, Adib M, Amiri M, Noveiri MJ. Challenges and barriers of triage during coronavirus pandemic from the emergency nurses’ perspective: a qualitative study. Open Nurs J. 2023;17: e187443462307260. doi:10.2174/18744346‑v17‑230829‑2023‑77
Rasouli HR et al. (2019). Outcomes of Crowding in Emergency Departments; a Systematic Review. Archives of Academic Emergency Medicine, 7(1):e52.
Lin IC, Chiu PW, Lin CH. Impact of the emergency procedure zone on emergency care. Medicina. 2023;59(5):901. doi:10.3390/medicina59050901
Gao Z, Qi X, Zhang X, et al. Developing and Validating an Emergency Triage Model Using Machine Learning Algorithms with Medical Big Data. Risk Manag Healthc Policy. 2023;16:1571–1583. doi:10.2147/RMHP.S415343
Ivanov O, Wolf L, Brecher D, et al. Improving Emergency Department ESI Acuity Assignment Using Machine Learning and Clinical Natural Language Processing. J Emerg Nurs. 2021;47(6):869–880. doi:10.1016/j.jen.2021.08.005
Colakca G, Colak S, Arslan U, et al. Emergency Department Triaging Using ChatGPT Based on Emergency Severity Index Principles: A Cross-Sectional Study. Int J Med Inform. 2024;185:105107. doi:10.1016/j.ijmedinf.2024.105107
Shamout FE, Zhu T, Clifton DA, et al. An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department. NPJ Digit Med. 2021;4:80.
Fernandes M, Mendes R, Vieira SM, et al. Predicting Intensive Care Unit admission among patients presenting to the emergency department using machine learning and natural language processing. PLoS One. 2022;17(5):e0268013.
Logothetis SB, Green D, Holland M, Al Moubayed N. Predicting acute clinical deterioration with interpretable machine learning to support emergency care decision making. Sci Rep. 2023;13:13563.
Byrsell F, Claesson A, Ringh M, et al. Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls: A retrospective study. Resuscitation. 2021;162:95–102. doi:10.1016/j.resuscitation.2021.01.029
Blomberg SN, Christensen HC, Lippert F, et al. Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services: A Randomized Clinical Trial. JAMA Netw Open. 2021;4(11):e2133276. doi:10.1001/jamanetworkopen.2021.33276
Fraser H, Crossland D, Bacher I, Ranney M, Madsen T, Hilliard R. Comparison of diagnostic and triage accuracy of Ada Health and WebMD symptom checkers, ChatGPT, and physicians for patients in an emergency department: clinical data analysis study. JMIR Mhealth Uhealth. 2023;11:e49995. doi:10.2196/49995
You Y, Gui X. Self-Diagnosis through AI-enabled Chatbot-based Symptom Checkers: User Experiences and Design Considerations. In: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM; 2022. doi:10.1145/3491102.3502061
Elshehaly M, Randell R, Brehmer M, McVey L, Alvarado N, Gale CP, Ruddle RA. QualDash: Adaptable Generation of Visualisation Dashboards for Healthcare Quality Improvement. arXiv preprint. 2020; arXiv:2009.03002.
Tuominen J, Pulkkinen E, Peltonen J, et al. Forecasting Emergency Department Crowding with Advanced Machine Learning Models and Multivariable Input. arXiv preprint arXiv:2308.16544. 2023.
Ip W, Xenochristou M, Sui E, Ruan E, Ribeira R, Dash D, et al. Hospitalization prediction from the emergency department using computer vision AI with short patient video clips. NPJ Digit Med. 2024;7:69. doi:10.1038/s41746-024-01084-6
Chen F, Wang L, Hong J, Jiang J, Zhou L. Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. Journal of the American Medical Informatics Association. 2024;31(5):1172–1183. doi:10.1093/jamia/ocae060.
Xie F, Ong MEH, Liew JNMH, Tan KBK, Ho AFW, Nadarajan GD, et al. Score for Emergency Risk Prediction (SERP): An Interpretable Machine Learning AutoScore–Derived Triage Tool for Predicting Mortality after Emergency Admissions. medRxiv. 2021. doi:10.1101/2021.02.09.21251397
Abdalhalim AZA, Ahmed SNNA, Ezzelarab AMD, Mustafa M, Albasheer MGA, Ahmed REA, et al. Clinical Impact of Artificial Intelligence-Based Triage Systems in Emergency Departments: A Systematic Review. 2024
Chenais G, Lagarde E, Gil-Jardiné C. Artificial Intelligence in Emergency Medicine: Viewpoint of Current Applications and Foreseeable Opportunities and Challenges. J Med Internet Res. 2023 May 23;25:e40031. doi: 10.2196/40031. PMID: 36972306; PMCID: PMC10245226.
Chen F, Wang L, Hong J, Jiang J, Zhou L. Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. J Am Med Inform Assoc. 2024 Apr 19;31(5):1172-1183. doi: 10.1093/jamia/ocae060. PMID: 38520723; PMCID: PMC11031231.
Published
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.