Koliste RNA w nowotworach: mechanizmy, funkcje i perspektywy terapeutyczne
Synopsis
Koliste RNA (circRNA) to unikalna klasa niekodujących RNA o zamkniętej strukturze pierścieniowej, pełniąca istotne funkcje w biologii komórki i nowotworzeniu. Wykazują wysoką stabilność, specyficzną ekspresję tkankową i zdolność do oddziaływania z innymi cząsteczkami, takimi jak mikroRNA (miRNA) oraz białka. Mechanizmy biogenezy circRNA obejmują różne formy składania eksonów i intronów, co pozwala na ich klasyfikację oraz zróżnicowane funkcje biologiczne. CircRNA uczestniczą w regulacji ekspresji genów poprzez sekwestrację miRNA, interakcje z białkami oraz modulowanie procesów transkrypcyjnych i translacyjnych. W kontekście nowotworów pełnią zarówno funkcje onkogenne, jak i supresorowe, wpływając na proliferację, apoptozę, angiogenezę i przerzuty. Wśród nowotworów, w których circRNA odgrywają istotną rolę, znajdują się rak piersi, jelita grubego, płuc, wątrobowokomórkowy (HCC), żołądka oraz nowotwory układu moczowego. Ze względu na wysoką stabilność i obecność w płynach ustrojowych, circRNA wykazują potencjał jako biomarkery nowotworowe o wysokiej swoistości i czułości diagnostycznej. Mogą być również celem terapii, m.in. poprzez technologie RNA interference, oligonukleotydy antysensowne oraz narzędzia edycji genomu, co otwiera nowe możliwości w leczeniu nowotworów. Analiza dostępnych badań pozwala na identyfikację kluczowych aspektów roli circRNA w nowotworach oraz wskazuje na potrzebę dalszych badań nad ich funkcją, mechanizmami działania i potencjalnym zastosowaniem klinicznym. Rozwój metod detekcji oraz strategii terapeutycznych opartych na circRNA może przyczynić się do postępu w diagnostyce i leczeniu nowotworów, stanowiąc nowy kierunek w onkologii molekularnej. W niniejszym artykule przedstawiono przegląd znanych informacji dotyczących kolistych RNA w kontekście nowotworów, ich rolę i potencjał oraz przede wszystkim innowacyjne drogi terapii z wykorzystaniem tych struktur.
References
Referencje
Li D, Guo J, Ni X, Sun G, Bao H. The progress and challenges of circRNA for diabetic foot ulcers: A mini-review. Front Endocrinol (Lausanne). 2022 Nov 30;13:1019935. doi: 10.3389/fendo.2022.1019935.
Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, Li H. The emerging landscape of circular RNA in life processes. RNA Biol. 2017 Aug 3;14(8):992-999. doi: 10.1080/15476286.2016.1220473. Epub 2016 Aug 11.
Rausch JW, Heinz WF, Payea MJ, Sherpa C, Gorospe M, Le Grice SFJ. Characterizing and circumventing sequence restrictions for synthesis of circular RNA in vitro. Nucleic Acids Res. 2021 Apr 6;49(6):e35. doi: 10.1093/nar/gkaa1256. PMID: 33406226;
Li W, Liu JQ, Chen M, Xu J, Zhu D. Circular RNA in cancer development and immune regulation. J Cell Mol Med. 2022 Mar;26(6):1785-1798. doi: 10.1111/jcmm.16102. Epub 2020 Dec 5
Zhou J, Chen Y, He M, Li X, Wang R. Role of Circular RNAs in Pulmonary Fibrosis. Int J Mol Sci. 2022 Sep 10;23(18):10493. doi: 10.3390/ijms231810493.
Hu F, Peng Y, Fan X, Zhang X, Jin Z. Circular RNAs: implications of signaling pathways and bioinformatics in human cancer. Cancer Biol Med. 2023 Mar 2;20(2):104–28. doi: 10.20892/j.issn.2095-3941.2022.0466
Garlapati P, Ling J, Chiao PJ, Fu J. Circular RNAs regulate cancer-related signaling pathways and serve as potential diagnostic biomarkers for human cancers. Cancer Cell Int. 2021 Jun 23;21(1):317. doi: 10.1186/s12935-021-02017-4. PMID: 34162394;
Ebermann C, Schnarr T, Müller S. Recent advances in understanding circular RNAs. F1000Res. 2020 Jun 29;9:F1000 Faculty Rev-655. doi: 10.12688/f1000research.25060.1.
Zhang B, Zhang H, Wang Z, Cao H, Zhang N, Dai Z, Liang X, Peng Y, Wen J, Zhang X, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Peng R. The regulatory role and clinical application prospects of circRNA in the occurrence and development of CNS tumors. CNS Neurosci Ther. 2024 Apr;30(4):e14500. doi: 10.1111/cns.14500. Epub 2023 Nov 12.
Derakhshan Z, Bahmanpour S, Alaee S, Fallahi J, Tabei SMB. The Role of Circular RNAs in Male Infertility and Reproductive Cancers: A Narrative Review. Iran J Med Sci. 2023 Nov 1;48(6):527-541. doi: 10.30476/IJMS.2022.95302.2661.
Tao M, Zheng M, Xu Y, Ma S, Zhang W, Ju S. CircRNAs and their regulatory roles in cancers. Mol Med. 2021 Aug 26;27(1):94. doi: 10.1186/s10020-021-00359-3.
Cortés-López M, Miura P. Emerging Functions of Circular RNAs. Yale J Biol Med. 2016 Dec 23;89(4):527-537. PMID: 28018143;
Zhang Z, Yang T, Xiao J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine. 2018 Aug;34:267-274. doi: 10.1016/j.ebiom.2018.07.036. Epub 2018 Aug 2.
Sanati M, Ghafouri-Fard S. The role of circRNAs in resistance to doxorubicin. Cell Commun Signal. 2024 Nov 29;22(1):572. doi: 10.1186/s12964-024-01952-9.
Lu Y, Li Z, Lin C, Zhang J, Shen Z. Translation role of circRNAs in cancers. J Clin Lab Anal. 2021 Jul;35(7):e23866. doi: 10.1002/jcla.23866. Epub 2021 Jun 7.
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C, Fu S. CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med. 2021 Nov;48(5):201. doi: 10.3892/ijmm.2021.5034. Epub 2021 Sep 16.
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014 Oct 2;56(1):55-66. doi: 10.1016/j.molcel.2014.08.019. Epub 2014 Sep 18.
Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer. 2019 Jan 9;18(1):6. doi: 10.1186/s12943-018-0934-6.
Chen R, Wang SK, Belk JA, Amaya L, Li Z, Cardenas A, Abe BT, Chen CK, Wender PA, Chang HY. Engineering circular RNA for enhanced protein production. Nat Biotechnol. 2023 Feb;41(2):262-272. doi: 10.1038/s41587-022-01393-0. Epub 2022 Jul 18. Erratum in: Nat Biotechnol. 2023 Feb;41(2):293. doi: 10.1038/s41587-022-01472-2.
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020 Dec 14;19(1):172. doi: 10.1186/s12943-020-01286-3.
Tao M, Zheng M, Xu Y, Ma S, Zhang W, Ju S. CircRNAs and their regulatory roles in cancers. Mol Med. 2021 Aug 26;27(1):94. doi: 10.1186/s10020-021-00359-3.
Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, He A, Eshaghi E, Zeng K, Ma J, Du WW, Yang BB. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 2019 Dec;26(12):2758-2773. doi: 10.1038/s41418-019-0337-2. Epub 2019 May 15.
Chen L, Kong R, Wu C, Wang S, Liu Z, Liu S, Li S, Chen T, Mao C, Liu S. Circ-MALAT1 Functions as Both an mRNA Translation Brake and a microRNA Sponge to Promote Self-Renewal of Hepatocellular Cancer Stem Cells. Adv Sci (Weinh). 2019 Dec 21;7(4):1900949. doi: 10.1002/advs.201900949. Erratum in: Adv Sci (Weinh). 2020 May 06;7(9):2000890. doi: 10.1002/advs.202000890.
Kohansal M, Alghanimi YK, Banoon SR, Ghasemian A, Afkhami H, Daraei A, Wang Z, Nekouian N, Xie J, Deng X, Tang H. CircRNA-associated ceRNA regulatory networks as emerging mechanisms governing the development and biophysiopathology of epilepsy. CNS Neurosci Ther. 2024 Apr;30(4):e14735. doi: 10.1111/cns.14735.
Zhang Z, Yang T, Xiao J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine. 2018 Aug;34:267-274. doi: 10.1016/j.ebiom.2018.07.036. Epub 2018 Aug 2.
Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 2021 Jan 22;19:910-928. doi: 10.1016/j.csbj.2021.01.018.
Li XX, Xiao L, Chung HK, Ma XX, Liu X, Song JL, Jin CZ, Rao JN, Gorospe M, Wang JY. Interaction between HuR and circPABPN1 Modulates Autophagy in the Intestinal Epithelium by Altering ATG16L1 Translation. Mol Cell Biol. 2020 Feb 27;40(6):e00492-19. doi: 10.1128/MCB.00492-19.
Patop IL, Kadener S. circRNAs in Cancer. Curr Opin Genet Dev. 2018 Feb;48:121-127. doi: 10.1016/j.gde.2017.11.007. Epub 2017 Dec 12.
Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 2022 Apr 13;7(1):121. doi: 10.1038/s41392-022-00975-3.
Tao M, Zheng M, Xu Y, Ma S, Zhang W, Ju S. CircRNAs and their regulatory roles in cancers. Mol Med. 2021 Aug 26;27(1):94. doi: 10.1186/s10020-021-00359-3.
Cui C, Yang J, Li X, Liu D, Fu L, Wang X. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer. 2020 Mar 14;19(1):58. doi: 10.1186/s12943-020-01180-y.
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X, Xu Y. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 2020 Feb 24;11(2):145. doi: 10.1038/s41419-020-2336-0.
Kalezic A, Udicki M, Srdic Galic B, Aleksic M, Korac A, Jankovic A, Korac B. Tissue-Specific Warburg Effect in Breast Cancer and Cancer-Associated Adipose Tissue-Relationship between AMPK and Glycolysis. Cancers (Basel). 2021 May 31;13(11):2731. doi: 10.3390/cancers13112731.
Bao H, Li J, Zhao Q, Yang Q, Xu Y. Circular RNAs in Breast Cancer: An Update. Biomolecules. 2024 Jan 29;14(2):158. doi: 10.3390/biom14020158.
Erdogan C, Suer I, Kaya M, Ozturk S, Aydin N, Kurt Z. Bioinformatics analysis of the potentially functional circRNA-miRNA-mRNA network in breast cancer. PLoS One. 2024 Apr 18;19(4):e0301995. doi: 10.1371/journal.pone.0301995.
Yang S, Li D. The role of circRNA in breast cancer drug resistance. PeerJ. 2024 Dec 18;12:e18733. doi: 10.7717/peerj.18733.
Ghazimoradi MH, Babashah S. The role of CircRNA/miRNA/mRNA axis in breast cancer drug resistance. Front Oncol. 2022 Sep 5;12:966083. doi: 10.3389/fonc.2022.966083.
Gopikrishnan M, R HC, R G, Ashour HM, Pintus G, Hammad M, Kashyap MK, C GPD, Zayed H. Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Funct Integr Genomics. 2023 May 27;23(2):184. doi: 10.1007/s10142-023-01083-3.
Tian JH, Liu SH, Yu CY, Wu LG, Wang LB. The Role of Non-Coding RNAs in Breast Cancer Drug Resistance. Front Oncol. 2021 Sep 13;11:702082. doi: 10.3389/fonc.2021.702082.
Zuo YB, Zhang YF, Zhang R, Tian JW, Lv XB, Li R, Li SP, Cheng MD, Shan J, Zhao Z, Xin H. Ferroptosis in Cancer Progression: Role of Noncoding RNAs. Int J Biol Sci. 2022 Feb 14;18(5):1829-1843. doi: 10.7150/ijbs.66917.
Wu Z, Wu M, Jiang X, Shang F, Li S, Mi Y, Geng C, Tian Y, Li Z, Zhao Z. The study on circRNA profiling uncovers the regulatory function of the hsa_circ_0059665/miR-602 pathway in breast cancer. Sci Rep. 2024 Sep 4;14(1):20555. doi: 10.1038/s41598-024-71505-0.
Li RD, Guan M, Zhou Z, Dong SX, Liu Q. The Role of circRNAs in the Diagnosis of Colorectal Cancer: A Meta-Analysis. Front Med (Lausanne). 2021 Nov 19;8:766208. doi: 10.3389/fmed.2021.766208.
Li T, Wang WC, McAlister V, Zhou Q, Zheng X. Circular RNA in colorectal cancer. J Cell Mol Med. 2021 Apr;25(8):3667-3679. doi: 10.1111/jcmm.16380.
Zhou J, Wang L, Sun Q, Chen R, Zhang C, Yang P, Tan Y, Peng C, Wang T, Jin C, Ji J, Jin K, Sun Y. Hsa_circ_0001666 suppresses the progression of colorectal cancer through the miR-576-5p/PCDH10 axis. Clin Transl Med. 2021 Nov;11(11):e565. doi: 10.1002/ctm2.565.
Hu YA, Zhu Y, Liu G, Yao X, Yan X, Yang Y, Wang W, Zou X, Li X. Expression profiles of circular RNAs in colon biopsies from Crohn's disease patients by microarray analysis. J Clin Lab Anal. 2021 Jun;35(6):e23788. doi: 10.1002/jcla.23788. Epub 2021 May 6.
Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, Zhang X, Zhang C, Zhang P, Gong S, Wu N, Ren Z, Song J, Zhang Y. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer. 2021 Sep 8;20(1):114. doi: 10.1186/s12943-021-01412-9.
Ameli-Mojarad M, Ameli-Mojarad M, Hadizadeh M, Young C, Babini H, Nazemalhosseini-Mojarad E, Bonab MA. The effective function of circular RNA in colorectal cancer. Cancer Cell Int. 2021 Sep 17;21(1):496. doi: 10.1186/s12935-021-02196-0.
Zhuang J, Song W, Li M, Kang D, Cheng K. Circular RNA (circ)_0053277 Contributes to Colorectal Cancer Cell Growth, Angiogenesis, Metastasis and Glycolysis. Mol Biotechnol. 2024 Nov;66(11):3285-3299. doi: 10.1007/s12033-023-00936-3. Epub 2023 Nov 2.
Yang Y, Luo D, Shao Y, Shan Z, Liu Q, Weng J, He W, Zhang R, Li Q, Wang Z, Li X. circCAPRIN1 interacts with STAT2 to promote tumor progression and lipid synthesis via upregulating ACC1 expression in colorectal cancer. Cancer Commun (Lond). 2023 Jan;43(1):100-122. doi: 10.1002/cac2.12380. Epub 2022 Nov 3.
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X, Lin C. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer. 2021 Feb 3;20(1):26. doi: 10.1186/s12943-021-01318-6.
Siedlecki E, Remiszewski P, Stec R. The Role of circHIPK3 in Tumorigenesis and Its Potential as a Biomarker in Lung Cancer. Cells. 2024 Sep 4;13(17):1483. doi: 10.3390/cells13171483.
Fu Y, Sun H. Biogenesis, cellular effects, and biomarker value of circHIPK3. Cancer Cell Int. 2021 May 11;21(1):256. doi: 10.1186/s12935-021-01956-2.
Ma Y, Zhang X, Wang YZ, Tian H, Xu S. Research progress of circular RNAs in lung cancer. Cancer Biol Ther. 2019;20(2):123-129. doi: 10.1080/15384047.2018.1523848. Epub 2018 Nov 7.
Dong H, Zhou J, Cheng Y, Wang M, Wang S, Xu H. Biogenesis, Functions, and Role of CircRNAs in Lung Cancer. Cancer Manag Res. 2021 Aug 24;13:6651-6671. doi: 10.2147/CMAR.S324812.
Geng Y, Jiang J, Wu C. Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol. 2018 Jul 31;11(1):98. doi: 10.1186/s13045-018-0643-z.
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 2022 May 5;21(1):108. doi: 10.1186/s12943-022-01582-0.
Liang ZZ, Guo C, Zou MM, Meng P, Zhang TT. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int. 2020 May 19;20:173. doi: 10.1186/s12935-020-01245-4.
Babayev M, Silveyra P. Role of circular RNAs in lung cancer. Front Genet. 2024 Mar 4;15:1346119. doi: 10.3389/fgene.2024.1346119.
Xu HZ, Lin XY, Xu YX, Xue HB, Lin S, Xu TW. An emerging research: the role of hepatocellular carcinoma-derived exosomal circRNAs in the immune microenvironment. Front Immunol. 2023 Sep 11;14:1227150. doi: 10.3389/fimmu.2023.1227150.
Ely A, Bloom K, Maepa MB, Arbuthnot P. Recent Update on the Role of Circular RNAs in Hepatocellular Carcinoma. J Hepatocell Carcinoma. 2021 Jan 27;8:1-17. doi: 10.2147/JHC.S268291.
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci. 2023 Nov 18;24(22):16484. doi: 10.3390/ijms242216484.
Yu J, Yang M, Zhou B, Luo J, Zhang Z, Zhang W, Yan Z. CircRNA-104718 acts as competing endogenous RNA and promotes hepatocellular carcinoma progression through microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond). 2019 Jul 15;133(13):1487-1503. doi: 10.1042/CS20190394.
Liu Y, Wang L, Liu W. Roles of circRNAs in the Tumorigenesis and Metastasis of HCC: A Mini Review. Cancer Manag Res. 2022 May 31;14:1847-1856. doi: 10.2147/CMAR.S362594.
Li Y, Ji M, Huang X, Yang F, Yang Z, Shen L. CircRNA_0040705 promotes the progression of hepatocellular carcinoma. IUBMB Life. 2022 May;74(5):408-418. doi: 10.1002/iub.2598. Epub 2022 Feb 20.
Chen H, Liu S, Li M, Huang P, Li X. circ_0003418 Inhibits Tumorigenesis And Cisplatin Chemoresistance Through Wnt/β-Catenin Pathway In Hepatocellular Carcinoma. Onco Targets Ther. 2019 Nov 11;12:9539-9549. doi: 10.2147/OTT.S229507.
Liu L, Gu M, Ma J, Wang Y, Li M, Wang H, Yin X, Li X. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol Cancer. 2022 Jul 20;21(1):149. doi: 10.1186/s12943-022-01619-4.
Xiong D, He R, Dang Y, Wu H, Feng Z, Chen G. The Latest Overview of circRNA in the Progression, Diagnosis, Prognosis, Treatment, and Drug Resistance of Hepatocellular Carcinoma. Front Oncol. 2021 Feb 17;10:608257. doi: 10.3389/fonc.2020.608257.
Mao Y, Ding Z, Jiang M, Yuan B, Zhang Y, Zhang X. Circ_0091579 exerts an oncogenic role in hepatocellular carcinoma via mediating miR-136-5p/TRIM27. Biomed J. 2022 Dec;45(6):883-895. doi: 10.1016/j.bj.2021.12.009. Epub 2021 Dec 30.
Zhou Y, Mao X, Peng R, Bai D. CircRNA w raku wątrobowokomórkowym: charakterystyka, funkcje i znaczenie kliniczne. Int J Med Sci. 2022 14 listopada;19(14):2033-2043. doi: 10.7150/ijms.74713.
Lei B, Tian Z, Fan W, Ni B. Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci. 2019 Jan 1;16(2):292-301. doi: 10.7150/ijms.28047.
Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020 May;77(9):1661-1680. doi: 10.1007/s00018-019-03345-5. Epub 2019 Oct 28.
Guo X, Tan W, Wang C. Nowe role egzosomalnych circRNA w chorobach. Clin Transl Oncol. 2021 czerwiec;23(6):1020-1033. doi: 10.1007/s12094-020-02485-6. Epub 2020 wrzesień 15.
Wang X, Zhang J, Cao G, Hua J, Shan G, Lin W. Emerging roles of circular RNAs in gastric cancer metastasis and drug resistance. J Exp Clin Cancer Res. 2022 Jul 11;41(1):218. doi: 10.1186/s13046-022-02432-z.
Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao B, Ye G, Guo J. Hsa_circ_0065149 is an Indicator for Early Gastric Cancer Screening and Prognosis Prediction. Pathol Oncol Res. 2020 Jul;26(3):1475-1482. doi: 10.1007/s12253-019-00716-y. Epub 2019 Aug 20.
Ma Q, Yang F, Xiao B, Guo X. Emerging roles of circular RNAs in tumorigenesis, progression, and treatment of gastric cancer. J Transl Med. 2024 Feb 27;22(1):207. doi: 10.1186/s12967-024-05001-4.
Li C, Peng X, Peng Z, Yan B. circBGN accelerates gastric cancer cell proliferation and invasion via activating IL6/STAT3 signaling pathway. FASEB J. 2022 Nov;36(11):e22604. doi: 10.1096/fj.202200957RR.
Li F, Zhang L, Sun Q. CircAKT3 promotes cell proliferation, survival and glutamine metabolism of gastric cancer by activating SLC1A5 expression via targeting miR-515-5p. Histol Histopathol. 2022 Mar;37(3):227-241. doi: 10.14670/HH-18-401. Epub 2021 Dec 1.
Ouyang J, Long Z, Li G. Circular RNAs in Gastric Cancer: Potential Biomarkers and Therapeutic Targets. Biomed Res Int. 2020 Jun 30;2020:2790679. doi: 10.1155/2020/2790679.
Lu Y, Li K, Gao Y, Liang W, Wang X, Chen L. CircRNAs in gastric cancer: current research and potential clinical implications. FEBS Lett. 2021 Nov;595(21):2644-2654. doi: 10.1002/1873-3468.14196. Epub 2021 Oct 21.
Zhang Y, Wang M, Zang X, Mao Z, Chen Y, Mao F, Qian H, Xu W, Zhang X. CircHN1 affects cell proliferation and migration in gastric cancer. J Clin Lab Anal. 2020 Oct;34(10):e23433. doi: 10.1002/jcla.23433. Epub 2020 Jul 1.
Luo L, Xie Q, Wu Y, Li P, Qin F, Liao D, Wang K. Circular RNA CCT3 is a unique molecular marker in bladder cancer. BMC Cancer. 2023 Oct 13;23(1):977. doi: 10.1186/s12885-023-11510-0.
Cheng F, Zheng B, Si S, Wang J, Zhao G, Yao Z, Niu Z, He W. The Roles of CircRNAs in Bladder Cancer: Biomarkers, Tumorigenesis Drivers, and Therapeutic Targets. Front Cell Dev Biol. 2021 Jul 19;9:666863. doi: 10.3389/fcell.2021.666863.
Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, Zhang HL, Shi GH, Wang ZL, Cao DL, Ye DW. The function and mechanisms of action of circular RNAs in Urologic Cancer. Mol Cancer. 2023 Mar 25;22(1):61. doi: 10.1186/s12943-023-01766-2. Erratum in: Mol Cancer. 2023 Apr 24;22(1):73. doi: 10.1186/s12943-023-01774-2.
Ghafouri-Fard S, Najafi S, Hussen BM, Basiri A, Hidayat HJ, Taheri M, Rashnoo F. The Role of Circular RNAs in the Carcinogenesis of Bladder Cancer. Front Oncol. 2022 Feb 28;12:801842. doi: 10.3389/fonc.2022.801842.
Liang H, Huang H, Li Y, Lu Y, Ye T. CircRNA_0058063 functions as a ceRNA in bladder cancer progression via targeting miR-486-3p/FOXP4 axis. Biosci Rep. 2020 Mar 27;40(3):BSR20193484. doi: 10.1042/BSR20193484.
Li Y, Qiao L, Zang Y, Ni W, Xu Z. Circular RNA FOXO3 Suppresses Bladder Cancer Progression and Metastasis by Regulating MiR-9-5p/TGFBR2. Cancer Manag Res. 2020 Jun 25;12:5049-5056. doi: 10.2147/CMAR.S253412.
Rao D, Yu C, Sheng J, Lv E, Huang W. The Emerging Roles of circFOXO3 in Cancer. Front Cell Dev Biol. 2021 Jun 4;9:659417. doi: 10.3389/fcell.2021.659417.
Yang F, Guo Z, Wu J, Lu X. Circ-ITCH inhibits bladder cancer progression through miR-184/FOXO3 axis. Am J Transl Res. 2024 Dec 15;16(12):7911-7923. doi: 10.62347/XBRV7186.
Zhao X, Zhong Y, Wang X, Shen J, An W. Advances in Circular RNA and Its Applications. Int J Med Sci. 2022 May 27;19(6):975-985. doi: 10.7150/ijms.71840.
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, Chen Z, Tang K, Ye Z. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer. 2021 Jan 4;20(1):4. doi: 10.1186/s12943-020-01300-8.
Wang D, Yang S, Wang H, Wang J, Zhang Q, Zhou S, He Y, Zhang H, Deng F, Xu H, Zhong S, Fu L, Tang J. The progress of circular RNAs in various tumors. Am J Transl Res. 2018 Jun 15;10(6):1571-1582.
Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, Chand G, Bedognetti D, El-Rifai W, Frenneaux MP, Macha MA, Ahmed I, Haris M. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Front Cell Dev Biol. 2021 Feb 5;9:617281. doi: 10.3389/fcell.2021.617281.
Li J, Li H, Lv X, Yang Z, Gao M, Bi Y, Zhang Z, Wang S, Cui Z, Zhou B, Yin Z. Diagnostic performance of circular RNAs in human cancers: A systematic review and meta-analysis. Mol Genet Genomic Med. 2019 Jul;7(7):e00749. doi: 10.1002/mgg3.749. Epub 2019 May 20.
Zhang M, Xin Y. Circular RNAs: nowy front w diagnostyce i terapii nowotworów. J Hematol Oncol. 2018 luty 13;11(1):21. doi: 10.1186/s13045-018-0569-5.
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023 Sep;42(38):2783-2800. doi: 10.1038/s41388-023-02780-w. Epub 2023 Aug 16.
Wang S, Dong Y, Gong A, Kong H, Gao J, Hao X, Liu Y, Wang Z, Fan Y, Liu C, Xu W. Exosomal circRNAs as novel cancer biomarkers: Challenges and opportunities. Int J Biol Sci. 2021 Jan 14;17(2):562-573. doi: 10.7150/ijbs.48782.
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol. 2022 Apr 7;12:845703. doi: 10.3389/fonc.2022.845703.
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 2022 May 5;21(1):108. doi: 10.1186/s12943-022-01582-0.
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci. 2024 May 31;25(11):6094. doi: 10.3390/ijms25116094.
Wei J, Li M, Xue C, Chen S, Zheng L, Deng H, Tang F, Li G, Xiong W, Zeng Z, Zhou M. Understanding the roles and regulation patterns of circRNA on its host gene in tumorigenesis and tumor progression. J Exp Clin Cancer Res. 2023 Apr 15;42(1):86. doi: 10.1186/s13046-023-02657-6.
Kim J. Circular RNAs: Novel Players in Cancer Mechanisms and Therapeutic Strategies. Int J Mol Sci. 2024 Sep 20;25(18):10121. doi: 10.3390/ijms251810121.
Yang Q, Li F, He AT, Yang BB. Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther. 2021 May 5;29(5):1683-1702. doi: 10.1016/j.ymthe.2021.01.018. Epub 2021 Jan 21.
Garlapati P, Ling J, Chiao PJ, Fu J. Circular RNAs regulate cancer-related signaling pathways and serve as potential diagnostic biomarkers for human cancers. Cancer Cell Int. 2021 Jun 23;21(1):317. doi: 10.1186/s12935-021-02017-4.
Ng WL, Mohd Mohidin TB, Shukla K. Functional role of circular RNAs in cancer development and progression. RNA Biol. 2018;15(8):995-1005. doi: 10.1080/15476286.2018.1486659. Epub 2018 Aug 4.
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis. 2024 May 2;15(5):312. doi: 10.1038/s41419-024-06698-3.
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023 Sep;42(38):2783-2800. doi: 10.1038/s41388-023-02780-w. Epub 2023 Aug 16.
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, Shu Y. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019 Sep 4;12(1):90. doi: 10.1186/s13045-019-0776-8.
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res. 2024 Sep 11;10:98-115. doi: 10.1016/j.ncrna.2024.09.006.
Liu J, Zhang X, Yan M, Li H. Emerging Role of Circular RNAs in Cancer. Front Oncol. 2020 May 20;10:663. doi: 10.3389/fonc.2020.00663.
Papatsirou M, Artemaki PI, Karousi P, Scorilas A, Kontos CK. Circular RNAs: Emerging Regulators of the Major Signaling Pathways Involved in Cancer Progression. Cancers (Basel). 2021 Jun 1;13(11):2744. doi: 10.3390/cancers13112744.
Szczepaniak A, Bronisz A, Godlewski J. Circular RNAs-New Kids on the Block in Cancer Pathophysiology and Management. Cells. 2023 Feb 8;12(4):552. doi: 10.3390/cells12040552.
Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020 Feb 15;19(1):30. doi: 10.1186/s12943-020-1135-7.
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, Li X, Li G, Zeng Z, Xiong W. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020 Feb 4;19(1):22. doi: 10.1186/s12943-020-1147-3.
Cui X, Wang J, Guo Z, Li M, Li M, Liu S, Liu H, Li W, Yin X, Tao J, Xu W. Emerging function and potential diagnostic value of circular RNAs in cancer. Mol Cancer. 2018 Aug 15;17(1):123. doi: 10.1186/s12943-018-0877-y.
Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, Zhang W, Li X, Li X, Li Y, Li G, Zeng Z, Xiong W. Circular RNAs in human cancer. Mol Cancer. 2017 Jan 31;16(1):25. doi: 10.1186/s12943-017-0598-7.
Zhang L, Gao H, Li X, Yu F, Li P. The important regulatory roles of circRNA‑encoded proteins or peptides in cancer pathogenesis (Review). Int J Oncol. 2024 Feb;64(2):19. doi: 10.3892/ijo.2023.5607. Epub 2024 Jan 8.
Published
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.