Wykorzystanie zdolności regeneracyjnej neuronów OUN w leczeniu urazów rdzenia kręgowego – wybrane innowacyjne metody terapeutyczne
Keywords:
SCI, OUN, regeneracja, neuroplastycznośćSynopsis
Uraz rdzenia kręgowego (SCI) prowadzi do trwałych zaburzeń czucia oraz funkcji motorycznych, co znacząco obniża jakość życia pacjentów. Uszkodzenia obejmują zarówno fazę pierwotną, jak i wtórną, w której procesy zapalne, stres oksydacyjny i tworzenie blizny glejowej pogłębiają dysfunkcje neurologiczne. Tradycyjne podejścia terapeutyczne, takie jak farmakoterapia, chirurgia i rehabilitacja, mają ograniczoną skuteczność w przywracaniu utraconych funkcji. Obecnie coraz większą uwagę zwraca się na innowacyjne metody wspierające regenerację ośrodkowego układu nerwowego (OUN).
Nowoczesne strategie terapeutyczne obejmują zastosowanie bioaktywnych biomateriałów, takich jak hydrożele, nanowłókna oraz rusztowania polimerowe, które wspomagają odrastanie aksonów, kolonizację komórek i angiogenezę. Ich elastyczność, biokompatybilność i przewodnictwo elektryczne umożliwiają skuteczniejsze wspieranie regeneracji niż tradycyjne materiały. Równolegle rozwijane są terapie komórkowe z wykorzystaniem różnych typów komórek macierzystych (np. MSC, NSC, iPSC), które wykazują działanie neuroprotekcyjne, przeciwzapalne oraz regeneracyjne.
Uzupełnieniem powyższych metod jest stymulacja elektryczna rdzenia kręgowego, która aktywuje zachowane szlaki nerwowe i wspiera neuroplastyczność. Zintegrowane podejście, łączące biomateriały, komórki i stymulację, stanowi obiecującą ścieżkę terapii SCI, otwierając nowe możliwości w rekonstrukcji uszkodzonych struktur nerwowych oraz poprawie funkcji neurologicznych.
References
Soares, S., von Boxberg, Y., & Nothias, F. (2020). Repair strategies for traumatic spinal cord injury, with special emphasis on novel biomaterial-based approaches. Revue Neurologique, 176(4), 252–260. https://doi.org/10.1016/j.neurol.2019.07.029
Tsata, V., Kroehne, V., Wehner, D., Rost, F., Lange, C., Hoppe, C., Kurth, T., Reinhardt, S., Petzold, A., Dahl, A., Loeffler, M., Reimer, M. M., & Brand, M. (2020). Reactive oligodendrocyte progenitor cells (re-)myelinate the regenerating zebrafish spinal cord. Development, 147(24), dev193946. https://doi.org/10.1242/dev.193946
Bennett J, Das JM, Emmady PD. Spinal Cord Injuries. 2024 Dec 13. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32809556.
Anjum, A., Yazid, M. D., Fauzi Daud, M., Idris, J., Ng, A. M. H., Selvi Naicker, A., Ismail, O. H. R., Athi Kumar, R. K., & Lokanathan, Y. (2020). Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. International Journal of Molecular Sciences, 21(20), 7533. https://doi.org/10.3390/ijms21207533
De Miguel-Rubio, A., Gallego-Aguayo, I., De Miguel-Rubio, M. D., Arias-Avila, M., Lucena-Anton, D., & Alba-Rueda, A. (2023). Effectiveness of the Combined Use of a Brain–Machine Interface System and Virtual Reality as a Therapeutic Approach in Patients with Spinal Cord Injury: A Systematic Review. Healthcare, 11(24), 3189. https://doi.org/10.3390/healthcare11243189
Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2019). Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00282
Bryce, T. N., Biering-Sørensen, F., Finnerup, N. B., Cardenas, D. D., Defrin, R., Lundeberg, T., Norrbrink, C., Richards, J. S., Siddall, P., Stripling, T., Treede, R.-D., Waxman, S. G., Widerström-Noga, E., Yezierski, R. P., & Dijkers, M. (2011). International Spinal Cord Injury Pain Classification: part I. Background and description. Spinal Cord, 50(6), 413–417. https://doi.org/10.1038/sc.2011.156
Hashimoto, S., Nagoshi, N., Nakamura, M., & Okano, H. (2023). Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regeneration Research, 19(4), 818–824. https://doi.org/10.4103/1673-5374.382230
Khorasanizadeh, M.; Yousefifard, M.; Eskian, M.; Lu, Y.; Chalangari, M.; Harrop, J.S.; Rahimi-Movaghar, V. Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis. J. Neurosurg. 2019, 30, 683–699.
Arriero-Cabañero, A., García-Vences, E., Sánchez-Torres, S., Aristizabal-Hernandez, S., García-Rama, C., Pérez-Rizo, E., Fernández-Mayoralas, A., Grijalva, I., Buzoianu-Anguiano, V., Doncel-Pérez, E., & Mey, J. (2024). Transplantation of Predegenerated Peripheral Nerves after Complete Spinal Cord Transection in Rats: Effect of Neural Precursor Cells and Pharmacological Treatment with the Sulfoglycolipid Tol-51. Cells, 13(16), 1324. https://doi.org/10.3390/cells13161324
Hu, X., Xu, W., Ren, Y., Wang, Z., He, X., Huang, R., Ma, B., Zhao, J., Zhu, R., & Cheng, L. (2023). Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01477-6
Sharma, S., Kalyani, N., Dutta, T., Velázquez-González, J. S., Llamas-Garro, I., Ung, B., Bas, J., Dubey, R., & Mishra, S. K. (2024). Optical Devices for the Diagnosis and Management of Spinal Cord Injuries: A Review. Biosensors, 14(6), 296. https://doi.org/10.3390/bios14060296
Al Mamun, A., Quan, Z., Geng, P., Wang, S., Shao, C., & Xiao, J. (2024). Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies. CNS Neuroscience & Therapeutics, 30(12), 1–15. https://doi.org/10.1111/cns.70193
Young, W. (2014). Spinal Cord Regeneration. Cell Transplantation, 23(4-5), 573–611. https://doi.org/10.3727/096368914x678427
Josephson, A., Widenfalk, J., Widmer, H. W., Olson, L., & Spenger, C. (2001). NOGO mRNA Expression in Adult and Fetal Human and Rat Nervous Tissue and in Weight Drop Injury. Experimental Neurology, 169(2), 319–328. https://doi.org/10.1006/exnr.2001.7659
Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., Christ, F., & Schwab, M. E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 403(6768), 434–439. https://doi.org/10.1038/35000219
Kamei, N., Kwon, S.-M., Kawamoto, A., Ii, M., Ishikawa, M., Ochi, M., & Asahara, T. (2012). Contribution of bone marrow-derived endothelial progenitor cells to neovascularization and astrogliosis following spinal cord injury. Journal of Neuroscience Research, 90(12), 2281–2292. https://doi.org/10.1002/jnr.23113
Daniel Pearse, D., Eduardo Marcillo, A., Oudega, M., Paul Lynch, M., McGhee Wood, P., & Bartlett Bunge, M. (2004). Transplantation of Schwann Cells and Olfactory Ensheathing Glia after Spinal Cord Injury: Does Pretreatment with Methylprednisolone and Interleukin-10 Enhance Recovery? Journal of Neurotrauma, 21(9), 1223–1239. https://doi.org/10.1089/neu.2004.21.1223
Liu, K., Lu, Y., Lee, J. K., Samara, R., Willenberg, R., Sears-Kraxberger, I., Tedeschi, A., Park, K. K., Jin, D., Cai, B., Xu, B., Connolly, L., Steward, O., Zheng, B., & He, Z. (2010). PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nature Neuroscience, 13(9), 1075–1081. https://doi.org/10.1038/nn.2603
Lu, P., Blesch, A., Graham, L., Wang, Y., Samara, R., Banos, K., Haringer, V., Havton, L., Weishaupt, N., Bennett, D., Fouad, K., & Tuszynski, M. H. (2012). Motor Axonal Regeneration after Partial and Complete Spinal Cord Transection. Journal of Neuroscience, 32(24), 8208–8218. https://doi.org/10.1523/jneurosci.0308-12.2012
Hasanzadeh, E., Seifalian, A., Mellati, A., Saremi, J., Asadpour, S., Enderami, S. E., Nekounam, H., & Mahmoodi, N. (2023). Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Materials Today Bio, 20, 100614. https://doi.org/10.1016/j.mtbio.2023.100614
Sensharma, P., Madhumathi, G., Jayant, R. D., & Jaiswal, A. K. (2017). Biomaterials and cells for neural tissue engineering: Current choices. Materials Science and Engineering: C, 77, 1302–1315. https://doi.org/10.1016/j.msec.2017.03.264
Yang, L. (2018). Translational Medicine: A Biomaterials Approach. Elsevier Science & Technology Books.
Niemczyk, B., Sajkiewicz, P., & Kolbuk, D. (2018). Injectable hydrogels as novel materials for central nervous system regeneration. Journal of Neural Engineering, 15(5), 051002. https://doi.org/10.1088/1741-2552/aacbab
Liu, X., Wu, C., Zhang, Y., Chen, S., Ding, J., Chen, Z., Wu, K., Wu, X., Zhou, T., Zeng, M., Wei, D., Sun, J., Fan, H., & Zhou, L. (2023). Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis. Carbohydrate Polymers, 120578. https://doi.org/10.1016/j.carbpol.2023.120578
Li, X., Zhang, C., Haggerty, A. E., Yan, J., Lan, M., Seu, M., Yang, M., Marlow, M. M., Maldonado-Lasunción, I., Cho, B., Zhou, Z., Chen, L., Martin, R., Nitobe, Y., Yamane, K., You, H., Reddy, S., Quan, D.-P., Oudega, M., & Mao, H.-Q. (2020). The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials, 245, 119978. https://doi.org/10.1016/j.biomaterials.2020.119978
Rahimi, B., Behroozi, Z., Motamed, A., Jafarpour, M., Hamblin, M. R., Moshiri, A., Janzadeh, A., & Ramezani, F. (2023). Study of nerve cell regeneration on nanofibers containing cerium oxide nanoparticles in a spinal cord injury model in rats. Journal of Materials Science: Materials in Medicine, 34(2). https://doi.org/10.1007/s10856-023-06711-9
Li, Z., Qi, Y., Sun, L., Li, Z., Chen, S., Zhang, Y., Ma, Y., Han, J., Wang, Z., Zhang, Y., Geng, H., Huang, B., Wang, J., Li, G., Li, X., Wu, S., & Ni, S. (2023). Three-dimensional nanofibrous sponges with aligned architecture and controlled hierarchy regulate neural stem cell fate for spinal cord regeneration. Theranostics, 13(14), 4762–4780. https://doi.org/10.7150/thno.87288
Cargnello, M., & Roux, P. P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83. https://doi.org/10.1128/mmbr.00031-10
Manning, B. D., & Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. Cell, 169(3), 381–405. https://doi.org/10.1016/j.cell.2017.04.001
Álvarez, Z., Kolberg-Edelbrock, A. N., Sasselli, I. R., Ortega, J. A., Qiu, R., Syrgiannis, Z., Mirau, P. A., Chen, F., Chin, S. M., Weigand, S., Kiskinis, E., & Stupp, S. I. (2021). Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science, 374(6569), 848–856. https://doi.org/10.1126/science.abh3602
Huang, L., Fu, C., Xiong, F., He, C., & Wei, Q. (2021). Stem Cell Therapy for Spinal Cord Injury. Cell Transplantation, 30, 096368972198926. https://doi.org/10.1177/0963689721989266
Li, Z., Zhang, Z., Zhao, L., Li, H., Wang, S., & Shen, Y. (2014). Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury. Neural Regeneration Research, 9(8), 806. https://doi.org/10.4103/1673-5374.131595
Park, S.-S., Byeon, Y.-E., Ryu, H.-H., Kang, B.-J., Kim, Y., Kim, W.-H., Kang, K.-S., Han, H.-J., & Kweon, O.-K. (2011). Comparison of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation Times: Involvement of Astrogliosis, Inflammation, Intracellular Actin Cytoskeleton Pathways, and Neurotrophin-3. Cell Transplantation, 20(11-12), 1867–1880. https://doi.org/10.3727/096368911x566163
Albayrak, Ö., Şener, T. E., Erşahin, M., Özbaş-Turan, S., Ekentok, C., Tavukçu, H. H., Çevik, Ö., Çetinel, Ş., Ertaş, B., & Şener, G. (2019). Mesenchymal stem cell therapy improves erectile dysfunction in experimental spinal cord injury. International Journal of Impotence Research, 32(3), 308–316. https://doi.org/10.1038/s41443-019-0168-1
Finnerup, N. B., & Jensen, T. S. (2004). Spinal cord injury pain - mechanisms and treatment. European Journal of Neurology, 11(2), 73–82. https://doi.org/10.1046/j.1351-5101.2003.00725.x
Karamian, B. A., Siegel, N., Nourie, B., Serruya, M. D., Heary, R. F., Harrop, J. S., & Vaccaro, A. R. (2022). The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. Journal of Orthopaedics and Traumatology, 23(1). https://doi.org/10.1186/s10195-021-00623-6
Sofroniew, M. V. (2018). Dissecting spinal cord regeneration. Nature, 557(7705), 343–350. https://doi.org/10.1038/s41586-018-0068-4
Marquez-Chin, C., & Popovic, M. R. (2020). Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. BioMedical Engineering OnLine, 19(1). https://doi.org/10.1186/s12938-020-00773-4
Rushton, D. N. (2003). Functional Electrical Stimulation and rehabilitation—an hypothesis. Medical Engineering & Physics, 25(1), 75–78. https://doi.org/10.1016/s1350-4533(02)00040-1
Moineau, B., Marquez-Chin, C., Alizadeh-Meghrazi, M., & Popovic, M. R. (2019). Garments for functional electrical stimulation: Design and proofs of concept. Journal of Rehabilitation and Assistive Technologies Engineering, 6, 205566831985434. https://doi.org/10.1177/2055668319854340
Published
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.