Stalowa precyzja. Zastosowanie robotów w neurochirurgii - przegląd aktualnej literatury

Authors

Paweł Łajczak, ; Kamil Jóźwik; Bartłomiej Jurek; Michał Gałuszewski; Julita Janiec; Krzysztof Żerdziński

Keywords:

Robot, Neurochirurgia, ROSA, technologia

Synopsis

Celem rozdziału jest przegląd zastosowań robotów w neurochirurgii, ze szczególnym uwzględnieniem ich wpływu na precyzję operacji, efektywność kliniczną oraz bezpieczeństwo pacjentów. Praca przedstawia aktualny stan technologii robotycznych w neurochirurgii, omawiając wybrane systemy robotyczne, takie jak ROSA, Mazor X, CorPath GRX oraz inne, analizując ich budowę, zastosowanie oraz korzyści płynące z ich wdrożenia w salach operacyjnych. W opracowaniu wykorzystano metodę przeglądu literatury, bazując na dostępnych artykułach naukowych, raportach badań klinicznych oraz dokumentacjach technicznych. Analiza skupia się na ocenie skuteczności robotów w różnych dziedzinach neurochirurgii, takich jak chirurgia kręgosłupa, neuroradiologia zabiegowa, neurochirurgia funkcjonalna oraz diagnostyka inwazyjna. Wyniki analizy wskazują na znaczną poprawę precyzji zabiegów, zmniejszenie ryzyka powikłań oraz skrócenie czasu operacji, co przyczynia się do lepszych wyników leczenia i szybszej rekonwalescencji pacjentów. W pracy poruszono również wyzwania związane z kosztami, szkoleniem personelu oraz dostępnością technologii, które mogą ograniczać powszechne wdrożenie robotów w neurochirurgii. Zakończenie rozdziału przedstawia perspektywy rozwoju robotyki w tej dziedzinie, wskazując na potencjał sztucznej inteligencji oraz technologii 6G w dalszym rozwoju robotów medycznych. Wnioski z pracy podkreślają konieczność dalszych badań nad optymalizacją tych technologii, aby w pełni wykorzystać ich możliwości w praktyce klinicznej.

References

Barrow DL, Bendok BR. Introduction: What is Neurosurgery? Operative Neurosurgery. 2019;17(Supplement_1):S1-S2. doi:https://doi.org/10.1093/ons/opz071

Marcus HJ, Hughes-Hallett A, Kwasnicki RM, Darzi A, Yang GZ, Nandi D. TECHNOLOGICAL INNOVATION IN NEUROSURGERY: A QUANTITATIVE STUDY. Journal of neurosurgery. 2015;123(1):174-181. doi:https://doi.org/10.3171/2014.12.JNS141422

Janhofer DE, Lakhiani C, Song DH. Addressing Surgeon Fatigue. Plastic and Reconstructive Surgery. 2019;144(4):693e699e. doi:https://doi.org/10.1097/prs.0000000000006075

Hanrahan J, Sideris M, Pasha T, et al. Hands train the brain—what is the role of hand tremor and anxiety in undergraduate microsurgical skills? Acta Neurochirurgica. 2018;160(9):1673-1679. doi:https://doi.org/10.1007/s00701-018-3609-6

Faraj MK, Kailan SL, Al-Neami AQH. A New Simple, Cost-Effective Navigation System (EASY Navigator) for Neurosurgical Interventions. World Neurosurgery. 2022;164:143-147. doi:https://doi.org/10.1016/j.wneu.2022.04.100

Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurgical Review. 2003;26(2):73-99. doi:https://doi.org/10.1007/s10143-003-0262-0

Tangsrivimol JA, Schonfeld E, Zhang M, et al. Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future. Diagnostics (Basel, Switzerland). 2023;13(14):2429. doi:https://doi.org/10.3390/diagnostics13142429

Bagga V, Bhattacharyya D. Robotics in neurosurgery. Annals of The Royal College of Surgeons of England. 2018;100(6 sup):23-26. doi:https://doi.org/10.1308/rcsann.supp1.19

Łajczak P, Żerdziński K, Jóźwik K, Laskowski M, Dymek M. Enhancing Precision and Safety in Spinal Surgery: A Comprehensive Review of Robotic Assistance Technologies. World neurosurgery. 2024;191:109-116. doi:https://doi.org/10.1016/j.wneu.2024.08.051

Lin T, Xie Q, Peng T, Zhao X, Chen D. The role of robotic surgery in neurological cases: A systematic review on brain and spine applications. Heliyon. 2023;9(12):e22523. doi:https://doi.org/10.1016/j.heliyon.2023.e22523

Pelz DM, Lownie SP, Mayich MS, Pandey SK, Sharma M. Interventional Neuroradiology: A Review. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques. 2021;48(2):172-188. doi:https://doi.org/10.1017/cjn.2020.153

Raymond J. Endovascular Neurosurgery: Personal Experience and Future Perspectives. World Neurosurgery. 2016;93:413-420. doi:https://doi.org/10.1016/j.wneu.2016.06.071

Łajczak PM, Jóźwik K, Nawrat Z. Mechanical marvels: robots in carotid artery stenting - a systematic review of effectiveness in neuroendovascular interventions. Artificial Intelligence Surgery. 2024;4(2):48-58. doi:https://doi.org/10.20517/ais.2024.05

Pereira VM, Nicholson P, Cancelliere NM, et al. Feasibility of robot-assisted neuroendovascular procedures. Journal of Neurosurgery. 2022;136(4):992-1004. doi:https://doi.org/10.3171/2021.1.jns203617

Weinberg J, Sweid A, Sajja K, et al. Comparison of robotic-assisted carotid stenting and manual carotid stenting through the transradial approach. Journal of Neurosurgery. 2020;135(1):21-28. doi:https://doi.org/10.3171/2020.5.jns201421

Sajja KC, Sweid A, Al Saiegh F, et al. Endovascular robotic: feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting. Journal of NeuroInterventional Surgery. 2020;12(4):345-349. doi:https://doi.org/10.1136/neurintsurg-2019-015763

Roy JM, Musmar B, Fuleihan AA, et al. Robotic versus manual diagnostic and stenting procedures: a systematic review and meta-analysis. Neurosurgical Review. 2024;47(1). doi:https://doi.org/10.1007/s10143-024-03141-1

Fisher CG, Vaccaro AR, Patel AA, et al. Evidence-Based Recommendations for Spine Surgery. Spine. 2020;45(12):851-859. doi:https://doi.org/10.1097/brs.0000000000003512

Momin AA, Steinmetz MP. Evolution of Minimally Invasive Lumbar Spine Surgery. World Neurosurgery. 2020;140:622-626. doi:https://doi.org/10.1016/j.wneu.2020.05.071

Wang TY, Wang MY. Advances and Challenges in Minimally Invasive Spine Surgery. Journal of Clinical Medicine. 2024;13(11):3329-3329. doi:https://doi.org/10.3390/jcm13113329

Antonacci CL, Zeng F, Block A, Davey A, Makanji H. Robotic-assisted spine surgery—a narrative review. Journal of Spine Surgery. 2024;10(2):305-312. doi:https://doi.org/10.21037/jss-23-40

Gajjar AA, Huy Dinh Le A, Swaroop Lavadi R, Boddeti U, Barpujari A, Agarwal N. Evolution of Robotics in Neurosurgery: A Historical Perspective. Interdisciplinary Neurosurgery. Published online January 2023:101721. doi:https://doi.org/10.1016/j.inat.2023.101721

Qi Z, Da H, Yanming F, Mingxing F. Current status and prospects of robot-assisted spine surgery. Expert Review of Medical Devices. Published online February 15, 2025. doi:https://doi.org/10.1080/17434440.2025.2467779

Lee NJ, Boddapati V, Mathew J, et al. Does robot-assisted spine surgery for multi-level lumbar fusion achieve better patient-reported outcomes than free-hand techniques? Interdisciplinary Neurosurgery. 2021;25:101214. doi:https://doi.org/10.1016/j.inat.2021.101214

Bu Kwang Oh, Son DW, Lee JS, et al. A Single-Center Experience of Robotic-Assisted Spine Surgery in Korea : Analysis of Screw Accuracy, Potential Risk Factor of Screw Malposition and Learning Curve. Journal of Korean neurosurgical society/Journal of Korean Neurosurgical Society/Daehan sin’gyeong oegwa hag’hoeji. 2024;67(1):60-72. doi:https://doi.org/10.3340/jkns.2023.0128

Li S, Du Z, Yu H. A Robot-Assisted Spine Surgery System Based on Intraoperative 2D Fluoroscopy Navigation. IEEE Access. 2020;8:51786-51802. doi:https://doi.org/10.1109/access.2020.2979993

Pennington Z, Judy BF, Zakaria HM, et al. Learning curves in robot-assisted spine surgery: a systematic review and proposal of application to residency curricula. Neurosurgical Focus. 2022;52(1):E3. doi:https://doi.org/10.3171/2021.10.focus21496

Łajczak P, Ayesha A, Jabbar R, et al. Comparison of accuracy of pedicle screw placement for adolescent idiopathic scoliosis using freehand fluoroscopic, navigation, and robotic-assisted techniques - a systematic review and bayesian network meta-analysis. Neurosurgical Review. 2025;48(1). doi:https://doi.org/10.1007/s10143-025-03333-3

Lazennec JY, d’Astorg H, Rousseau MA. Cervical spine surgery in ankylosing spondylitis: Review and current concept. Orthopaedics & Traumatology: Surgery & Research. 2015;101(4):507-513. doi:https://doi.org/10.1016/j.otsr.2015.02.005

Denaro V, Di Martino A. Cervical Spine Surgery: An Historical Perspective. Clinical Orthopaedics and Related Research®. 2011;469(3):639-648. doi:https://doi.org/10.1007/s11999-010-1752-3

Klepinowski T, Pala B, Cembik J, Sagan L. Prevalence of High-Riding Vertebral Artery: A Meta-Analysis of the Anatomical Variant Affecting Choice of Craniocervical Fusion Method and Its Outcome. World Neurosurgery. 2020;143:e474-e481. doi:https://doi.org/10.1016/j.wneu.2020.07.182

Klepinowski T, Żyłka N, Pettersson SD, et al. Types of high-riding vertebral artery: a classification system for preoperative planning of C2 instrumentation based on 908 potential screw insertion sites. The Spine Journal. Published online September 2024. doi:https://doi.org/10.1016/j.spinee.2024.08.021

Łajczak P, Łajczak A, Buczkowski S, et al. An early evaluation of robot-assisted and conventional techniques for posterior approach atlantoaxial displacement instrumentation - a systematic review and meta-analysis. Neurosurgical Review. 2025;48(1). doi:https://doi.org/10.1007/s10143-025-03256-z

Garfin SR, Yuan HA, Reiley MA. New Technologies in Spine. Spine. 2001;26(14):1511-1515. doi:https://doi.org/10.1097/00007632-200107150-00002

Heini PF, Orler R. Kyphoplasty for treatment of osteoporotic vertebral fractures. European Spine Journal. 2004;13(3):184-192. doi:https://doi.org/10.1007/s00586-003-0654-4

Li Z, Yu K, Chang X, Cai S, Gao J, Wang Y. Cement leakage following percutaneous kyphoplasty in a patient after a posterior lumbar fusion: a case report. BMC Surgery. 2020;20(1). doi:https://doi.org/10.1186/s12893-020-00733-8

Zhan Y, Jiang J, Liao H, Tan H, Yang K. Risk Factors for Cement Leakage After Vertebroplasty or Kyphoplasty: A Meta-Analysis of Published Evidence. World Neurosurgery. 2017;101:633-642. doi:https://doi.org/10.1016/j.wneu.2017.01.124

Chang Y, Chen WC, Chi KY, et al. Robot-Assisted Kyphoplasty versus Fluoroscopy-Assisted Kyphoplasty: A Meta-Analysis of Postoperative Outcomes. Medicina. 2023;59(4):662-662. doi:https://doi.org/10.3390/medicina59040662

Chen H, Li J, Wang X, Fu Y. Effects of robot-assisted percutaneous kyphoplasty on osteoporotic vertebral compression fractures: a systematic review and meta-analysis. Journal of Robotic Surgery. 2024;18(1). doi:https://doi.org/10.1007/s11701-024-01996-6

Mathon B, Favreau M, Degos V, et al. Brain Biopsy for Neurological Diseases of Unknown Etiology in Critically Ill Patients: Feasibility, Safety, and Diagnostic Yield. Critical Care Medicine. 2022;50(6):e516-e525. doi:https://doi.org/10.1097/ccm.0000000000005439

Porto Junior S, Meira DA, da Cunha BLB, et al. Robot-assisted stereotactic brain biopsy: A systematic review and meta-analysis. Neurosurgical Review. 2024;47(1). doi:https://doi.org/10.1007/s10143-024-03122-4

Minotti L, Montavont A, Scholly J, Tyvaert L, Taussig D. Indications and limits of stereoelectroencephalography (SEEG). Neurophysiologie Clinique. 2018;48(1):15-24. doi:https://doi.org/10.1016/j.neucli.2017.11.006

Gomes FC, Larcipretti ALL, Nager G, et al. Robot-assisted vs. manually guided stereoelectroencephalography for refractory epilepsy: a systematic review and meta-analysis. Neurosurgical Review. 2023;46(1). doi:https://doi.org/10.1007/s10143-023-01992-8

Magid-Bernstein J, Girard R, Polster S, et al. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circulation Research. 2022;130(8):1204-1229. doi:https://doi.org/10.1161/circresaha.121.319949

McGurgan IJ, Ziai WC, Werring DJ, Salman RAS, Parry-Jones AR. Acute intracerebral haemorrhage: diagnosis and management. Practical Neurology. 2020;21(2). doi:https://doi.org/10.1136/practneurol-2020-002763

Seiffge DJ, Anderson CS. Treatment for intracerebral hemorrhage: Dawn of a new era. International Journal of Stroke. 2024;19(5):482-489. doi:https://doi.org/10.1177/17474930241250259

Greenberg SM, Ziai WC, Cordonnier C, et al. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke. 2022;53(7). doi:https://doi.org/10.1161/str.0000000000000407

Deng C, Ji Y, Song W, Bi J. Clinical effect of minimally invasive aspiration and drainage of intracranial hematoma in the treatment of cerebral hemorrhage: Pakistan Journal of Medical Sciences. Pakistan Journal of Medical Sciences. 2022;38(1):95-99. doi:https://doi.org/10.12669/pjms.38.1.4618

Łajczak P, Łajczak A. Pedal to the metal: accelerating intracerebral hemorrhage treatment with robotic-assisted surgery. A systematic review & meta-analysis of clinical effectiveness. Neurosurgical Review. 2024;47(1). doi:https://doi.org/10.1007/s10143-024-03039-y

Hyun SJ, Kim KJ, Jahng TA, Kim HJ. Minimally Invasive Robotic Versus Open Fluoroscopic-guided Spinal Instrumented Fusions. SPINE. 2017;42(6):353-358. doi:https://doi.org/10.1097/brs.0000000000001778

McClelland S, Goldstein JA. Minimally Invasive versus Open Spine Surgery: What Does the Best Evidence Tell Us? Journal of Neurosciences in Rural Practice. 2017;08(02):194-198. doi:https://doi.org/10.4103/jnrp.jnrp_472_16

Chumnanvej S, Ariyaprakai K, Pillai BM, Suthakorn J, Gurusamy S, Chumnanvej S. Cost-effectiveness of robotic-assisted spinal surgery: A single-center retrospective study. Laparoscopic, Endoscopic and Robotic Surgery. 2023;6(4):147-153. doi:https://doi.org/10.1016/j.lers.2023.11.004

Menger RP, Savardekar AR, Farokhi F, Sin A. A Cost-Effectiveness Analysis of the Integration of Robotic Spine Technology in Spine Surgery. Neurospine. 2018;15(3):216-224. doi:https://doi.org/10.14245/ns.1836082.041

D’Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robotic Surgery: Research and Reviews. 2019;Volume 6:9-23. doi:https://doi.org/10.2147/rsrr.s190720

Akazawa T, Torii Y, Ueno J, et al. Learning curves for robotic-assisted spine surgery: an analysis of the time taken for screw insertion, robot setting, registration, and fluoroscopy. European Journal of Orthopaedic Surgery & Traumatology. 2023;34(1):127-134. doi:https://doi.org/10.1007/s00590-023-03630-x

Sundaram M, Lai MC, Kaliya-Perumal AK, Oh JYL. Overcoming the Learning Curve in Robot-Assisted Spinal Surgery—How Does It Compare to O-Arm Navigation? Surgeries. 2024;5(4):896-907. doi:https://doi.org/10.3390/surgeries5040072

Noh SH, Cho PG, Kim KN, Kim SH, Shin DA. Artificial Intelligence for Neurosurgery : Current State and Future Directions. J Korean Neurosurg Soc. 2023;66(2):113-120. doi:https://doi.org/10.3340/jkns.2022.0130

Kazemzadeh K, Akhlaghdoust M, Zali A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Frontiers in Surgery. 2023;10. doi:https://doi.org/10.3389/fsurg.2023.1241923

Awuah WA, Adebusoye FT, Wellington J, et al. Recent outcomes and challenges of artificial intelligence, machine learning and deep learning applications in neurosurgery – Review applications of artificial intelligence in neurosurgery. World Neurosurgery: X. Published online March 1, 2024:100301-100301. doi:https://doi.org/10.1016/j.wnsx.2024.100301

Gomez-Paz S, King P, Gomez A, Grandhi R. Exploring robotic advances, applications, and challenges in neuroendovascular surgery: A scoping review of the CorPath GRX system. Interventional Neuroradiology. Published online December 20, 2024. doi:https://doi.org/10.1177/15910199241305691

Pereira VM, Rice H, de Villiers L, et al. Evaluation of effectiveness and safety of the CorPath GRX robotic system in endovascular embolization procedures of cerebral aneurysms. Journal of NeuroInterventional Surgery. Published online October 4, 2023:jnis-020161. doi:https://doi.org/10.1136/jnis-2023-020161

Samprón N, Lafuente J, Presa-Alonso J, Ivanov M, Hartl R, Ringel F. Advancing spine surgery: Evaluating the potential for full robotic automation. Brain and Spine. 2025;5:104232. doi:https://doi.org/10.1016/j.bas.2025.104232

Published

June 19, 2025