Robotyka w chirurgii ortopedycznej: Jak systemy MAKO i ROSA zwiększają precyzję i poprawiają wyniki leczenia pacjentów

Authors

Martyna Żurek, ; Martyna Miśkiewicz; Zuzanna Michalak; Gabriela Najdek; Sara Rakotoarison; Agnieszka Sawina

Keywords:

robotyka, chirurgia ortopedyczna, MAKO, ROSA, artroplastyka

Synopsis

Robotyka jest jednym z najdynamiczniej rozwijających się obszarów medycyny, a jej zastosowanie w chirurgii ortopedycznej zrewolucjonizowało procedury operacyjne, oferując zwiększoną precyzję, bezpieczeństwo oraz szybszy powrót do zdrowia pacjentów. Celem artykułu jest przedstawienie systemów robotycznych MAKO i ROSA, które stały się liderami w obszarze robotyki ortopedycznej, szczególnie w endoprotezoplastyce stawu biodrowego i kolanowego oraz chirurgii kręgosłupa. W artykule omówiono historię rozwoju robotyki w ortopedii, począwszy od pierwszego robota ROBODOC, aż po współczesne systemy półautonomiczne, takie jak MAKO i ROSA. Systemy te poprawiają wyniki leczenia pacjentów, redukując liczbę powikłań oraz przyspieszając rekonwalescencję. Pomimo początkowych kosztów związanych z zakupem i wdrożeniem tych technologii, ich dalszy rozwój oraz zwiększenie dostępności stwarzają możliwości dla szerszego zastosowania robotyki w rutynowych procedurach chirurgicznych, co może przyczynić się do poprawy jakości opieki ortopedycznej na całym świecie.

References

Referencje

- Lane T. A short history of robotic surgery. annals. 2018;100(6_sup):5-7. doi:10.1308/rcsann.supp1.5

- Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthopaedica. 2017;88(6):581-586. doi:10.1080/17453674.2017.1344459

- Ling K, Wang W, Liu J. Current developments in 3D printing technology for orthopedic trauma: A review. Medicine. 2025;104(12):e41946. doi:10.1097/md.0000000000041946

- Hasan LK, Haratian A, Kim M, Bolia IK, Weber AE, Petrigliano FA. Virtual Reality in Orthopedic Surgery Training. AMEP. 2021;Volume 12:1295-1301. doi:10.2147/amep.s321885

- Li T, Badre A, Alambeigi F, Tavakoli M. Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review. Applied Sciences. 2023;13(17):9768. doi:10.3390/app13179768

- Innocenti B, Bori E. Robotics in orthopaedic surgery: why, what and how? Arch Orthop Trauma Surg. 2021;141(12):2035-2042. doi:10.1007/s00402-021-04046-0

- Alluri RK, Avrumova F, Sivaganesan A, Vaishnav AS, Lebl DR, Qureshi SA. Overview of Robotic Technology in Spine Surgery. HSS Journal®: The Musculoskeletal Journal of Hospital for Special Surgery. 2021;17(3):308-316. doi:10.1177/15563316211026647

- Fairag M, Almahdi RH, Siddiqi AA, et al. Robotic Revolution in Surgery: Diverse Applications Across Specialties and Future Prospects Review Article. Cureus. Published online January 12, 2024. doi:10.7759/cureus.52148

- SKC, VS, MG, MK. The Role of Robotics in Enhancing Precision and Outcomes in Orthopedic Surgery. IJFMR. 2024;6(6). doi:10.36948/ijfmr.2024.v06i06.30323

- Beasley RA. Medical Robots: Current Systems and Research Directions. Journal of Robotics. 2012;2012:1-14. doi:10.1155/2012/401613

- Chen C, Zou Q, Song Y, et al. Visual Attention Based Cognitive Human–Robot Collaboration for Pedicle Screw Placement in Robot-Assisted Orthopedic Surgery. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Published online October 14, 2024:7078-7084. doi:10.1109/iros58592.2024.10801930

- Cantivalli A, Cottino U, Bonasia DE, Rosso F, Rossi R. Robotic Systems in Knee Surgery: Current Concepts and Future Perspectives. Prosthesis. 2023;5(4):1257-1274. doi:10.3390/prosthesis5040086

- Singh J, Patel P. Robotics in Arthroplasty: Historical Progression, Contemporary Applications, and Future Horizons With Artificial Intelligence (AI) Integration. Cureus. Published online August 23, 2024. doi:10.7759/cureus.67611

- Jin G, Fan Y, Jiang L, Chen Z, Wang C. MAKO robot-assisted total knee arthroplasty cannot reduce the aggravation of ankle varus incongruence after genu varus correction ≥ 10°: a radiographic assessment. BMC Musculoskelet Disord. 2023;24(1). doi:10.1186/s12891-023-06597-2

- Mako SmartRobotics Overview. Stryker.com. Published 2022. https://www.stryker.com/gb/en/joint-replacement/systems/mako-smart-robotics-overview.html

‌- Domb BG, Redmond JM, Louis SS, et al. Accuracy of Component Positioning in 1980 Total Hip Arthroplasties: A Comparative Analysis by Surgical Technique and Mode of Guidance. The Journal of Arthroplasty. 2015;30(12):2208-2218. doi:10.1016/j.arth.2015.06.059

- Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of Robotic-assisted and Conventional Acetabular Cup Placement in THA: A Matched-pair Controlled Study. Clinical Orthopaedics & Related Research. 2014;472(1):329-336. doi:10.1007/s11999-013-3253-7

- Kayani B, Konan S, Pietrzak JRT, Haddad FS. Iatrogenic Bone and Soft Tissue Trauma in Robotic-Arm Assisted Total Knee Arthroplasty Compared With Conventional Jig-Based Total Knee Arthroplasty: A Prospective Cohort Study and Validation of a New Classification System. The Journal of Arthroplasty. 2018;33(8):2496-2501. doi:10.1016/j.arth.2018.03.042

- Kleeblad LJ, Borus TA, Coon TM, Dounchis J, Nguyen JT, Pearle AD. Midterm Survivorship and Patient Satisfaction of Robotic-Arm-Assisted Medial Unicompartmental Knee Arthroplasty: A Multicenter Study. The Journal of Arthroplasty. 2018;33(6):1719-1726. doi:10.1016/j.arth.2018.01.036

- Vigdorchik JM, Wakelin EA, Koenig JA, et al. Impact of Component Alignment and Soft Tissue Release on 2-Year Outcomes in Total Knee Arthroplasty. The Journal of Arthroplasty. 2022;37(10):2035-2040.e5. doi:10.1016/j.arth.2022.04.042

- Illgen RL Nd, Bukowski BR, Abiola R, et al. Robotic-Assisted Total Hip Arthroplasty: Outcomes at Minimum Two-Year Follow-Up. Surg Technol Int. 2017;30:365-372.

- Rosa® Robotic Solutions. ROSA® Robotic Solutions | Zimmer Biomet. Accessed April 10, 2025. https://www.zimmerbiomet.eu/en/services/robotic-solutions.

- Rosa Knee System: Zimmer Biomet. ROSA Knee System | Zimmer Biomet | Zimmer Biomet. Accessed April 10, 2025. https://www.zimmerbiomet.eu/en/products/rosa.

- Parratte S, Price AJ, Jeys LM, Jackson WF, Clarke HD. Accuracy of a New Robotically Assisted Technique for Total Knee Arthroplasty: A Cadaveric Study. The Journal of Arthroplasty. 2019;34(11):2799-2803. doi:10.1016/j.arth.2019.06.040

- Gamie Z, Kenanidis E, Douvlis G, Milonakis N, Maslaris A, Tsiridis E. Accuracy of the Imageless Mode of the ROSA Robotic System for Targeted Resection Thickness in Total Knee Arthroplasty: A Prospective, Single Surgeon Case‐Series Study. Robotics Computer Surgery. 2024;20(6). doi:10.1002/rcs.70029

- Gamie Z, Paparoidamis G, Milonakis N, Kenanidis E, Tsiridis E. The ROSA knee robotic system demonstrates superior precision in restoring joint line height and posterior condylar offset compared to conventional manual TKA: a retrospective case–control study. Eur J Orthop Surg Traumatol. 2024;34(5):2449-2455. doi:10.1007/s00590-024-03942-6

- Anderson M, Hueller K. | Promising Results for Early Survivorship Using the Persona Knee with the ROSA Knee System Promising Results for Early Survivorship Using the Persona ® Knee with the ROSA ® Knee System an Automated Industry Report from the Australian Orthopaedic Association National Joint Replacement Registry.; 2021. Accessed April 10, 2025. https://assets.ctfassets.net/rc4arfpyhdpw/gZ7sH2OAOcTOe04w9Nbrx/4c1a5755b968060186f4e36e6b3674b8/3511.1-GLBL-en-Issue_Date_2021-06-11_ROSA-AOANJRR-White-Paper.pdf

‌- ROSA® Hip System. Zimmerbiomet.eu. Published 2025. Accessed April 10, 2025. https://www.zimmerbiomet.eu/en/products/rosa-hip-system

- Buchan GBJ, Ong CB, Hecht II CJ, DeCook CA, Spencer-Gardner LS, Kamath AF. Use of a fluoroscopy-based robotic-assisted total hip arthroplasty system produced greater improvements in patient-reported outcomes at one year compared to manual, fluoroscopic-assisted technique. Arch Orthop Trauma Surg. 2024;144(4):1843-1850. doi:10.1007/s00402-024-05230-8

- Prinos A, Buehring W, Di Gangi C, Meere P, Meftah M, Hepinstall M. Robot-Assisted Total Hip Arthroplasty Demonstrates Improved 90-Day Clinical and Patient-Reported Outcomes. Arthroplasty Today. 2024;27:101393. doi:10.1016/j.artd.2024.101393

- Ong CB, Buchan GBJ, Hecht II CJ, et al. Robotic-assisted total hip arthroplasty utilizing a fluoroscopy-guided system resulted in improved intra-operative efficiency relative to a computerized tomography-based platform. J Robotic Surg. 2023;17(6):2841-2847. doi:10.1007/s11701-023-01723-7

- ROSA ONE Brain | Zimmer Biomet. Zimmerbiomet.eu. Published 2025. Accessed April 10, 2025. https://www.zimmerbiomet.eu/en/products/rosa-one-r-brain

- Lefranc M, Peltier J. Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa® Spine robot with intraoperative flat-panel CT guidance—a cadaver study. J Robotic Surg. 2015;9(4):331-338. doi:10.1007/s11701-015-0536-x

- Hsu BH, Liu HW, Lee KL, et al. Learning Curve of ROSA ONE Spine System for Transpedicular Screw Placement. Neurospine. 2022;19(2):367-375. doi:10.14245/ns.2143126.563

- Ong V, Swan AR, Sheppard JP, et al. A Comparison of Spinal Robotic Systems and Pedicle Screw Accuracy Rates: Review of Literature and Meta-Analysis. Asian J Neurosurg. 2022;17(04):547-556. doi:10.1055/s-0042-1757628

- Lefranc M, Peltier J. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Review of Medical Devices. 2016;13(10):899-906. doi:10.1080/17434440.2016.1236680

- Jiang B, Azad TD, Cottrill E, et al. New spinal robotic technologies. Front Med. 2019;13(6):723-729. doi:10.1007/s11684-019-0716-6

- Chen KK, Kim KY, Vigdorchik JM, Meere PA, Bosco JA, Iorio R. Cost-Effectiveness Analysis of Robotic Arthroplasty. Robotics in Knee and Hip Arthroplasty. Published online 2019:67-74. doi:10.1007/978-3-030-16593-2_7

- Li H, Zhuang T, Wu W, et al. A systematic review on the cost‐effectiveness of the computer‐assisted orthopedic system. Health Care Science. 2022;1(3):173-185. doi:10.1002/hcs2.23

- Duan X, Zhao Y, Zhang J, et al. Learning curve and short-term clinical outcomes of a new seven-axis robot-assisted total knee arthroplasty system: a propensity score-matched retrospective cohort study. J Orthop Surg Res. 2023;18(1). doi:10.1186/s13018-023-03899-y

- Cacciola G, Bosco F, Giustra F, et al. Learning Curve in Robotic-Assisted Total Knee Arthroplasty: A Systematic Review of the Literature. Applied Sciences. 2022;12(21):11085. doi:10.3390/app122111085

- Dretakis K, Koutserimpas C. Pitfalls with the MAKO Robotic-Arm-Assisted Total Knee Arthroplasty. Medicina. 2024;60(2):262. doi:10.3390/medicina60020262

- Zheng W, Wu B, Cheng T. Adverse events related to robotic-assisted knee arthroplasty: a cross-sectional study from the MAUDE database. Arch Orthop Trauma Surg. 2024;144(9):4151-4161. doi:10.1007/s00402-024-05501-4

- Shin C, Crovetti C, Huo E, Lionberger D. Unsatisfactory accuracy of recent robotic assisting system ROSA for total knee arthroplasty. J EXP ORTOP. 2022;9(1). doi:10.1186/s40634-022-00522-7

- Hoskins T, Begley B, Giacalone JD, De Wilde K, Maguire F, Wittig J. MakoTM robotic-arm-assisted total hip and total knee arthroplasty outcomes in an orthopedic oncology setting: A case series. Journal of Orthopaedics. 2023;46:70-77. doi:10.1016/j.jor.2023.10.021

- Rajgor HD, Mayne A, Munasinghe C, et al. Mako versus ROSA: comparing surgical accuracy in robotic total knee arthroplasty. J Robotic Surg. 2024;18(1). doi:10.1007/s11701-023-01786-6

- Mancino F, Rossi SMP, Sangaletti R, Lucenti L, Terragnoli F, Benazzo F. A new robotically assisted technique can improve outcomes of total knee arthroplasty comparing to an imageless navigation system. Arch Orthop Trauma Surg. 2022;143(5):2701-2711. doi:10.1007/s00402-022-04560-9

- Ram PR, Jeyaraman M, Jeyaraman N, Yadav S, Venkatasalam R. Revolutionizing Orthopedic Healthcare: The Role of Robotics. Cureus. Published online September 7, 2023. doi:10.7759/cureus.44820

- Rathod V, Gharpinde MR, Shrivastav S. Knee Arthroscopy in the Era of Precision Medicine: A Comprehensive Review of Tailored Approaches and Emerging Technologies. Cureus. Published online October 6, 2024. doi:10.7759/cureus.70932

- Lee YS, Cho DC, Kim KT. Navigation-Guided/Robot-Assisted Spinal Surgery: A Review Article. Neurospine. 2024;21(1):8-17. doi:10.14245/ns.2347184.592

- Wu Y, Liu J, Kang L, et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon. 2023;9(7):e17718. doi:10.1016/j.heliyon.2023.e17718

- Ram PR, Jeyaraman M, Jeyaraman N, Yadav S, Venkatasalam R. Revolutionizing Orthopedic Healthcare: The Role of Robotics. Cureus. Published online September 7, 2023. doi:10.7759/cureus.44820

Published

August 24, 2025