Innowacja w leczeniu wysiękowego zwyrodnienia plamki żółtej związanego z wiekiem- Farycymab (Vabysmo)
Keywords:
neowaskularyzacja, terapia anty-VEGF, farycymab, zwyrodnienie plamki związane z wiekiemSynopsis
Zwyrodnienie plamki związane z wiekiem (AMD) stanowi główną przyczynę pogorszenia ostrości wzroku u pacjentów powyżej 50 roku życia. Najważniejsze czynniki ryzyka rozwoju AMD to zaawansowany wiek, palenie tytoniu oraz czynniki genetyczne. Obecne schematy terapeutyczne zalecają stosowanie antyoksydantów, terapii fotodynamicznej (PTD) oraz iniekcji do ciała szklistego preparatów z grupy blokerów VEGF. Preparaty anty-VEGF stanowią najskuteczniejszą metodę leczenia. Jednym z najnowszych leków jest farycymab (Vabysmo), który jako jedyny hamuje dwa odrębne szlaki neowaskularyzacji, neutralizujące zarówno czynnik wzrostu śródbłonka naczyniowego A (VEGF-A), jak i angiopoetynę 2 (Ang-2). Hamując wydzielanie Ang-2 zmniejsza jej pobudzające działanie do syntezy VEGF-A. Skutkuje to mniejszą angiogenezą, zmniejszeniem stanu zapalnego i ograniczenie wysięków powodujących liczne blizny w obrębie siatkówki, które są odpowiedzialne za utratę widzenia w miarę progresji choroby.
References
Misiuk-Hojło M, Bakunowicz-Łazarczyk A, Dobrowolski D, et al. Position Statement of the Polish Society of Ophthalmology establishing standards for the management of patients with exudative age-related macular degeneration. Klinika Oczna / Acta Ophthalmologica Polonica. 2023;125(4):181-189. doi:10.5114/ko.2023.134018.
Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep. 2006;58(3):353-363.
Stahl A. The diagnosis and treatment of age-related macular degeneration. Dtsch Arztebl Int. 2020;117(29-30):513-520. doi:10.3238/arztebl.2020.0513.
Curcio CA. Antecedents of soft drusen, the specific deposits of age-related macular degeneration, in the biology of human macula. Invest Ophthalmol Vis Sci. 2018;59 doi: 10.1167/iovs.18-24883. AMD182-94.
Kulkarni A, Banait S. Through the smoke: an in-depth review on cigarette smoking and its impact on ocular health. Cureus. 2023;15(10):e47779. doi:10.7759/cureus.47779
Yanhui Deng, Lifeng Qiao, Mingyan Du, Chao Qu, Ling Wan, Jie Li, Lulin Huang, Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy, Genes & Diseases, Volume 9, Issue 1, 2022, Pages 62-79, ISSN 2352-3042.
L.G. Fritsche, R.N. Fariss, D. Stambolian, G.R. Abecasis, C.A. Curcio, A. Swaroop. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genom Hum Genet, 15 (2014), pp. 151-171
J.L. Haines, M.A. MHauser, S. Schmidt, et al. Complement factor H variant increases the risk of age-related macular degeneration, Science, 308 (5720) (2005), pp. 419-421
N. Rastogi, R.T. Smith, Association of age-related macular degeneration and reticular macular disease with cardiovascular disease. Surv Ophthalmol, 61 (4) (2016), pp. 422-433
T. Fischer, The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis
F. Choudhury, R. Varma, R. McKean-Cowdin, R. Klein, S.P. Azen, Risk factors for four-year incidence and progression of age-related macular degeneration: the los angeles latino eye study. Am J Ophthalmol, 152 (3) (2011), pp. 385-395
S. Srinivasan, G. Swaminathan, V. Kulothungan, S. Ganesan, T. Sharma, R. Raman Age-related macular degeneration in a South Indian population, with and without diabetes. Eye (Lond)., 31 (8) (2017), pp. 1176-1183
Regatieri CV, Branchini L, Duker JS. The Role of Spectral-Domain OCT in the Diagnosis and Management of Neovascular Age-Related Macular Degeneration. Ophthalmic Surgery, Lasers and Imaging Retina. 2011;42(4):S56-S66. doi:10.3928/15428877-20110627-0
N.K. Cassels, J.M. Wild, T.H. Margrain, V. Chong, J.H. Acton, The use of microperimetry in assessing visual function in age-related macular degeneration. Surv Ophthalmol, 63 (1) (2018), pp. 40-55
U. Schmidt-Erfurth, S. Klimscha, S.M. Waldstein, H. Bogunovic, A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye, 31 (1) (2017), pp. 26-44
Psomadakis CE, Marghoob N, Bleicher B, Markowitz O. Optical coherence tomography. Clin Dermatol. 2021;39(4):624-634. doi:10.1016/j.clindermatol.2021.03.008.
Age-Related Macular Degeneration, Thomas, Catherine J. et al. Medical Clinics, Volume 105, Issue 3, 473 - 491
Roque AB, da Silva Borges GF, Abe RY, de Souza OF, Machado MC, Ferreira T, et al. The effects of age-related macular degeneration on quality of life in a Brazilian population. Int J Retin Vitr. 2021;7:20
Nazari H, Zhang L, Zhu D, et al. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48:1–39.
Trinh, M., Kalloniatis, M., Khuu, S.K. et al. Retinal sensitivity changes in early/intermediate AMD: a systematic review and meta-analysis of visual field testing under mesopic and scotopic lighting. Eye 38, 1827–1835 (2024)
Wylęgała E, Teper S, Piłat J. Zwyrodnienie plamki związane z wiekiem. Górnicki Wydawnictwo Medyczne; 2011. ISBN: 9788361257493.
Kai Lyn Goh, Fred K. Chen, Chandrakumar Balaratnasingam, Carla J. Abbott, Lauren A.B. Hodgson, Robyn H. Guymer, Zhichao Wu, Cuticular Drusen in Age-Related Macular Degeneration: Association with Progression and Impact on Visual Sensitivity, Ophthalmology, Volume 129, Issue 6, 2022, Pages 653-660, ISSN 0161-6420,
Frederick L. Ferris, C.P. Wilkinson, Alan Bird, Usha Chakravarthy, Emily Chew, Karl Csaky, SriniVas R. Sadda, Clinical Classification of Age-related Macular Degeneration, Ophthalmology, Volume 120, Issue 4, 2013, Pages 844-851
Salehi MA, Mohammadi S, Gouravani M, Rezagholi F, Arevalo JF. Retinal and choroidal changes in AMD: a systematic review and meta-analysis of spectral-domain optical coherence tomography studies. Surv Ophthalmol. 2023;68(1):54-66.
Flores R, Carneiro Â, Tenreiro S, Seabra MC. Retinal Progression Biomarkers of Early and Intermediate Age-Related Macular Degeneration. Life. 2022; 12(1):36.
Fleckenstein, M.; Schmitz-Valckenberg, S.; Chakravarthy, U. Age-Related Macular Degeneration: A Review. JAMA 2024, 331, 147–157
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. International Journal of Molecular Sciences. 2024; 25(23):13053.
Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56.
Brown, E.E.; DeWeerd, A.J.; Ildefonso, C.J.; Lewin, A.S.; Ash, J.D. Mitochondrial Oxidative Stress in the Retinal Pigment Epithelium (RPE) Led to Metabolic Dysfunction in Both the RPE and Retinal Photoreceptors. Redox Biol. 2019, 24, 101201.
Abhinand, C.S.; Raju, R.; Soumya, S.J.; Arya, P.S.; Sudhakaran, P.R. VEGF-A/VEGFR2 Signaling Network in Endothelial Cells Relevant to Angiogenesis. J. Cell Commun. Signal 2016, 10, 347–354.
Wang, Yiyang & Ma, Xufan & Weddell, Rob & Okemgbo, Abum & Rein, David & Fawzi, Amani & Furst, Jacob & Raicu, Daniela. (2020). Detecting age-related macular degeneration (AMD) biomarker images using MFCC and texture features. 150. 10.1117/12.2551163.
Patel PN, Patel PA, Land MR, Bakerkhatib-Taha I, Ahmed H, Sheth V. Targeting the Complement Cascade for Treatment of Dry Age-Related Macular Degeneration. Biomedicines. 2022; 10(8):1884.
Girgis S, Lee LR. Treatment of dry age-related macular degeneration: A review. Clin Exp Ophthalmol. 2023; 51(8): 835-852. doi:10.1111/ceo.14294
Blasiak J, Pawlowska E, Ciupińska J, Derwich M, Szczepanska J, Kaarniranta K. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. International Journal of Molecular Sciences. 2024; 25(4):2386.
Oncel, D.; Oncel, D.; Mishra, K.; Oncel, M.; Arevalo, J.F. Current Management of Subretinal Hemorrhage in Neovascular Age-Related Macular Degeneration. Ophthalmologica 2023, 246, 295–305.
Han, X.; Chen, Y.; Gordon, I.; Safi, S.; Lingham, G.; Evans, J.; Keel, S.; He, M. A Systematic Review of Clinical Practice Guidelines for Age-related Macular Degeneration. Ophthalmic Epidemiol. 2023, 30, 213–220.
Wong K-H, Nam H-Y, Lew S-Y, Naidu M, David P, Kamalden TA, Hadie SNH, Lim L-W. Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals. 2022; 15(1):101. https://doi.org/10.3390/ph15010101
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. The Role of Reactive Oxygen Species in Age-Related Macular Degeneration: A Comprehensive Review of Antioxidant Therapies. Biomedicines. 2024; 12(7):1579. https://doi.org/10.3390/biomedicines12071579
Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age‐related macular degeneration. Cochrane Database Syst Rev. 2023;(9):CD000254. doi:10.1002/14651858.CD000254.pub5. Accessed April 13, 2025.
Dziedziak J, Kasarełło K, Cudnoch-Jędrzejewska A. Dietary Antioxidants in Age-Related Macular Degeneration and Glaucoma. Antioxidants. 2021; 10(11):1743. https://doi.org/10.3390/antiox10111743
Song D, Liu P, Shang K, Ma YB. Application and mechanism of anti-VEGF drugs in age-related macular degeneration. Front Bioeng Biotechnol. 2022;10:943915. doi:10.3389/fbioe.2022.943915.
Swara M, Sarvepalli I, Kapoor I, Sarici K, Garg SJ, Hadziahmetovic M. Evaluating photodynamic therapy as an adjuvant treatment for neovascular AMD: a comprehensive meta-analysis. Asia Pac J Ophthalmol (Phila). 2025;100173. doi:10.1016/j.apjo.2025.100173.
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022; 123: 1938-1965. doi:10.1002/jcb.30344
Sharma D, Zachary I, Jia H. Mechanisms of acquired resistance to anti-VEGF therapy for neovascular eye diseases. Invest Ophthalmol Vis Sci. 2023;64(5):28. doi:10.1167/iovs.64.5.28.
Maggio E, Deiro AP, Mete M i wsp. Intravitreal recombinant tissue plasminogen activator and sulphur hexafluoride gas for submacular hemorrhage displacement in age-related macular degeneration: looking behind the blood. Ophthalmologica 2020; 243: 224-235
Ranibizumab [characteristics of medicinal product]
Aflibercept [characteristics of medicinal product]
Brolucizumab [characteristics of medicinal product]
Farycimab [characteristics of medicinal product]
Choi, E.H.; Suh, S.; Sears, A.E.; Hołubowicz, R.; Kedhar, S.R.; Browne, A.W.; Palczewski, K. Genome editing in the treatment of ocular diseases. Exp. Mol. Med. 2023, 55, 1678–1690
Naftali Ben Haim, L.; Moisseiev, E. Drug Delivery via the Suprachoroidal Space for the Treatment of Retinal Diseases. Pharmaceutics 2021, 13, 967
Wu, K.Y.; Fujioka, J.K.; Gholamian, T.; Zaharia, M.; Tran, S.D. Suprachoroidal Injection: A Novel Approach for Targeted Drug Delivery. Pharmaceuticals 2023, 16, 1241.
Gelfman, C.M.; Grishanin, R.; Bender, K.O.; Nguyen, A.; Greengard, J.; Sharma, P.; Nieves, J.; Kiss, S.; Gasmi, M. Comprehensive Preclinical Assessment of ADVM-022, an Intravitreal Anti-VEGF Gene Therapy for the Treatment of Neovascular AMD and Diabetic Macular Edema. J. Ocul. Pharmacol. Ther. 2021, 37, 181–190.
Kiss, S.; Oresic Bender, K.; Grishanin, R.N.; Hanna, K.M.; Nieves, J.D.; Sharma, P.; Nguyen, A.T.; Rosario, R.J.; Greengard, J.S.; Gelfman, C.M.; et al. Long-Term Safety Evaluation of Continuous Intraocular Delivery of Aflibercept by the Intravitreal Gene Therapy Candidate ADVM-022 in Nonhuman Primates. Transl. Vis. Sci. Technol. 2021, 10, 34.
Heier JS, Singh RP, Wykoff CC, et al. Angiopoietin/tye-2 pathway in retinal vascular diseases: a review. Retina. 2021;41(1):1–19.
Ferro Desideri L, Traverso CE, Nicolò M, Munk MR. Faricimab in the treatment of diabetic macular edema and neovascular age-related macular degeneration. Pharmaceutics. 2023;15(5):1413.
Oshima Y, Deering T, Oshima S, et al. Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor. J Cell Physiol 2004;199:412–417
Regula JT, Lundh von Leithner P, Foxton R, et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol Med. 2019;11:e10666.
Foxton RH, Uhles S, Grüner S, Revelant F, Ullmer C. Efficacy of simultaneous VEGF-A/ANG-2 neutralization in suppressing spontaneous choroidal neovascularization. EMBO Mol Med. 2019;11:e10204.
Leung EH, Oh DJ, Alderson SE, et al. Early real-world experience with faricimab in treatment-resistant neovascular age-related macular degeneration. Clin Ophthalmol. 2023;17:1287–1293.
Khanani AM, Aziz AA, Khan H, et al. Real-world efficacy and safety of faricimab in neovascular age-related macular degeneration: 6-month outcomes from the TRUCKEE study. Eye (Lond). 2023;37:3574–3581.
Heier JS, Khanani AM, Quezada Ruiz C, et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomized, double-masked, phase 3, non-inferiority trials. Lancet. 2022;399:729–740.
Saima Y, Yokota H, Kushiyama A, et al. Effects of switching from intravitreal injection of aflibercept to faricimab on ocular blood flow in patients with diabetic macular edema. Sci Rep. 2024;14:13798. doi:10.1038/s41598-024-63435-8.
Nair AA, Finn AP, Sternberg P Jr. Spotlight on faricimab in the treatment of wet age-related macular degeneration: design, development and place in therapy. Drug Des Devel Ther. 2022;16:3395-3400. doi:10.2147/DDDT.S368963.
Published
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.