Cyfrowy bliźniak jako innowacyjna technologia medycyny spersonalizowanej: integracja AI, biosensorów i modelowania metabolicznego w terapii cukrzycy i nadciśnienia tętniczego.

Authors

Maksymilian Kściuczyk
Medical University of Silesia image/svg+xml
Jan Bąkowski
Jakub Cichoń

Keywords:

cyfrowe bliźniaki, medycyna spersonalizowana, cukrzyca typu 1, cukrzyca typu 2, nadciśnienie tętnicze, sztuczna inteligencja

Synopsis

Abstrakt:

Cyfrowe bliźniaki (Digital Twins, DT) są innowacyjnymi rozwiązaniami technologicznymi, które tworzą wirtualne odpowiedniki rzeczywistych obiektów lub systemów, działające w czasie rzeczywistym. Bazują na ciągłej integracji danych pochodzących z różnych źródeł, umożliwiając nie tylko monitorowanie aktualnego stanu, lecz także symulowanie przyszłych zachowań i reakcji w odpowiedzi na zmieniające się warunki. W kontekście medycznym, cyfrowe bliźniaki pozwalają na precyzyjne odwzorowanie indywidualnych procesów fizjologicznych pacjentów, umożliwiając analizę oraz prognozowanie efektów różnych strategii terapeutycznych. Niniejszy rozdział prezentuje zastosowanie cyfrowych bliźniaków jako nowatorskiego podejścia w leczeniu cukrzycy typu 1 (ang. Type 1 Diabetes, T1D), cukrzycy typu 2 (ang. Type 2 Diabetes, T2D) oraz współistniejącego nadciśnienia tętniczego. Szczególny nacisk położono na zaawansowane techniki modelowania matematycznego, integrację metod sztucznej inteligencji oraz wykorzystanie różnorodnych źródeł danych, takich jak biosensory, urządzenia noszone oraz elektroniczna dokumentacja zdrowotna. Opisane zostały przełomowe modele bazujące na równaniach różniczkowych zwyczajnych (ang. ordinary differential equations, ODE) oraz grafach wiedzy (np. SPOKE), które znacząco poprawiają trafność przewidywań dotyczących metabolizmu pacjentów. Rozdział omawia również istotną rolę systemów wspomagania decyzji (ang. decision support systems DSS) w personalizacji terapii, przedstawiając wyniki najnowszych badań klinicznych potwierdzających skuteczność technologii DT. Ponadto, wskazane zostały wyzwania związane z wdrożeniem cyfrowych bliźniaków, obejmujące jakość danych, ich dostępność, kwestie prywatności oraz konieczność standaryzacji technologii. Ostatecznie, praca podkreśla strategiczną wartość cyfrowych bliźniaków w kształtowaniu przyszłości medycyny, prowadząc do bardziej skutecznych, indywidualnie dopasowanych terapii.

References

-Emmert-Streib F. What is the role of AI for digital twins? AI. 2023;4(3):721-728. doi:10.3390/ai4030038

- Cimino C, Negri E, Fumagalli L. Review of digital twin applications in manufacturing. Computers in Industry. 2019;113:103130. doi:10.1016/j.compind.2019.103130

- Attaran M, Celik BG. Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal. 2023;6:100165. doi:10.1016/j.dajour.2023.100165

- Wright L, Davidson S. How to tell the difference between a model and a digital twin. Advanced Modeling and Simulation in Engineering Sciences. 2020;7(1). doi:10.1186/s40323-020-00147-4

- A survey on Digital Twin: Definitions, characteristics, applications, and design implications. IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8901113. Published 2019.

- Grieves M, Vickers J. Digital Twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Springer eBooks. ; 2016:85-113. doi:10.1007/978-3-319-38756-7_4

- Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and U.S. air force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA, Honolulu, 23 April 2012. 10.2514/6.2012-1818

- Tuegel E (2012) The airframe digital twin: some challenges to realization. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA, Honolulu, 23-26 April 2012. 10.2514/6.2012-1812

- JosÉ NR, Carlos NHJ, Manuel NO, Fernando NM. Product Avatar as digital counterpart of a physical individual product: literature review and implications in an aircraft. In: Advances in Transdisciplinary Engineering. ; 2015. doi:10.3233/978-1-61499-544-9-657

- Han DC (2020) Research on strategies of “information-physical” interaction oriented to building digital twin. Dissertation, Tsinghua University

- Lee J, Lapira E, Bagheri B, Kao HA. Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters. 2013;1(1):38-41. doi:10.1016/j.mfglet.2013.09.005

- Zhuang C, Liu J, Xiong H, Ding X, Liu S, Weng G. Connotation, architecture and trends of product digital twin. Beijing Institute of Technology. April 2017. doi:10.13196/j.cims.2017.04.010

- Nie RM, Zhou XY, Xiao J, Zhao B. Analysis and perspective on digital twin technology. Astronaut Syst Eng Technol. 2022;6(1):1–6

- Rosen R, Von Wichert G, Lo G, Bettenhausen KD. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine. 2015;48(3):567-572. doi:10.1016/j.ifacol.2015.06.141

- Yao JF, Yang Y, Wang XC, Zhang XP. Systematic review of digital twin technology and applications. Vis Comput Ind Biomed Art. 2023;6(1):10. Published 2023 May 30. doi:10.1186/s42492-023-00137-4

- Benson M. Digital twins will revolutionise healthcare. Engineering & Technology. 2021;16(2):50-53. doi:10.1049/et.2021.0210

- Sun T, He X, Li Z. Digital twin in healthcare: Recent updates and challenges. Digit Health. 2023;9:20552076221149651. Published 2023 Jan 3. doi:10.1177/20552076221149651

- Sun T, He X, Song X, Shu L, Li Z. The Digital Twin in Medicine: A Key to the Future of Healthcare?. Front Med (Lausanne). 2022;9:907066. Published 2022 Jul 14. doi:10.3389/fmed.2022.907066

- Cellina M, Cè M, Alì M, et al. Digital twins: the new frontier for personalized medicine? Applied Sciences. 2023;13(13):7940. doi:10.3390/app13137940

- Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation (Camb). 2021;2(4):100179. Published 2021 Oct 28. doi:10.1016/j.xinn.2021.100179

- Venkatesh KP, Raza MM, Kvedar JC. Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation. NPJ Digit Med. 2022;5(1):150. Published 2022 Sep 22. doi:10.1038/s41746-022-00694-7

- Subramanian K. Digital Twin for Drug Discovery and Development—The Virtual Liver. Journal of the Indian Institute of Science. 2020;100(4):653-662. doi:10.1007/s41745-020-00185-2

- Gkouskou K, Vlastos I, Karkalousos P, Chaniotis D, Sanoudou D, Eliopoulos AG. The "Virtual Digital Twins" Concept in Precision Nutrition. Adv Nutr. 2020;11(6):1405-1413. doi:10.1093/advances/nmaa089

- Fukawa N, Rindfleisch A. Enhancing innovation via the digital twin. Journal of Product Innovation Management. 2023;40(4):391-406. doi:10.1111/jpim.12655

- Cheng W, Lian W, Tian J. Building the hospital intelligent twins for all-scenario intelligence health care. Digit Health. 2022;8:20552076221107894. Published 2022 Jun 12. doi:10.1177/20552076221107894

- Haleem A, Javaid M, Singh RP, Suman R. Exploring the revolution in healthcare systems through the applications of digital twin technology. Biomedical Technology. 2023;4:28-38. doi:10.1016/j.bmt.2023.02.001

- Emmert‐Streib F, Yli‐Harja O, Dehmer M. Explainable artificial intelligence and machine learning: A reality rooted perspective. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery. 2020;10(6). doi:10.1002/widm.1368

- Emmert-Streib F, Yli-Harja O. What Is a Digital Twin? Experimental Design for a Data-Centric Machine Learning Perspective in Health. Int J Mol Sci. 2022;23(21):13149. Published 2022 Oct 29. doi:10.3390/ijms232113149

- Mosquera-Lopez C, Jacobs PG. Digital twins and artificial intelligence in metabolic disease research. Trends Endocrinol Metab. 2024;35(6):549-557. doi:10.1016/j.tem.2024.04.019

- An G, Cockrell C. Drug Development Digital Twins for drug Discovery, Testing and Repurposing: A schema for requirements and development. Frontiers in Systems Biology. 2022;2. doi:10.3389/fsysb.2022.928387

- Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opinion on Drug Discovery. 2023;19(1):33-42. doi:10.1080/17460441.2023.2273839

- Li X, Lee EJ, Lilja S, et al. A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets. Genome Medicine. 2022;14(1). doi:10.1186/s13073-022-01048-4

- Wang T, Dremel J, Richter S, et al. Resolution-enhanced multi-core fiber imaging learned on a digital twin for cancer diagnosis. Neurophotonics. 2024;11(S1). doi:10.1117/1.nph.11.s1.s11505

- De Lepper AGW, Buck CMA, Van ‘T Veer M, Huberts W, Van De Vosse FN, Dekker LRC. From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy. Journal of the Royal Society Interface. 2022;19(194). doi:10.1098/rsif.2022.0317

- Bahrami F, Rossi RM, De Nys K, Defraeye T. An individualized digital twin of a patient for transdermal fentanyl therapy for chronic pain management. Drug Delivery and Translational Research. 2023;13(9):2272-2285. doi:10.1007/s13346-023-01305-y

- Young G, Dodier R, Youssef JE, et al. Design and in silico evaluation of an exercise decision support system using digital twin models. Journal of Diabetes Science and Technology. 2024;18(2):324-334. doi:10.1177/19322968231223217

- Rovati L, Gary PJ, Cubro E, et al. Development and usability testing of a patient digital twin for critical care education: a mixed methods study. Frontiers in Medicine. 2024;10. doi:10.3389/fmed.2023.1336897

- Opportunities and challenges for digital twins in biomedical research.; 2023. doi:10.17226/26922 Vallée A. Digital twin for healthcare systems. Frontiers in Digital Health. 2023;5. doi:10.3389/fdgth.2023.1253050

- Vallée A. Digital twin for healthcare systems. Frontiers in Digital Health. 2023;5. doi:10.3389/fdgth.2023.1253050

- Sarp S, Kuzlu M, Zhao Y, Gueler O. Digital Twin in Healthcare: A Study for Chronic Wound Management. IEEE J Biomed Health Inform. 2023;27(11):5634-5643. doi:10.1109/JBHI.2023.329902

- Castle JR, Jacobs PG. Nonadjunctive use of continuous glucose monitoring for diabetes treatment decisions. Journal of Diabetes Science and Technology. 2016;10(5):1169-1173. doi:10.1177/1932296816631569

- Brown SA, Kovatchev BP, Raghinaru D, et al. Six-Month randomized, multicenter trial of Closed-Loop control in Type 1 diabetes. New England Journal of Medicine. 2019;381(18):1707-1717. doi:10.1056/nejmoa1907863

- Brown SA, Forlenza GP, Bode BW, et al. Multicenter trial of a tubeless, On-Body automated insulin delivery system with customizable glycemic targets in pediatric and adult participants with Type 1 diabetes. Diabetes Care. 2021;44(7):1630-1640. doi:10.2337/dc21-0172

- Jacobs PG, Resalat N, Hilts W, et al. Integrating metabolic expenditure information from wearable fitness sensors into an AI-augmented automated insulin delivery system: a randomised clinical trial. The Lancet Digital Health. 2023;5(9):e607-e617. doi:10.1016/s2589-7500(23)00112-7

- Martin CK, Han H, Coulon SM, Allen HR, Champagne CM, Anton SD. A novel method to remotely measure food intake of free-living individuals in real time: the remote food photography method. British Journal of Nutrition. 2008;101(3):446-456. doi:10.1017/s0007114508027438

- Kelly JT, Campbell KL, Gong E, Scuffham P. The Internet of Things: Impact and Implications for Health Care Delivery. J Med Internet Res. 2020;22(11):e20135. Published 2020 Nov 10. doi:10.2196/20135

- Manickam P, Mariappan SA, Murugesan SM, et al. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors (Basel). 2022;12(8):562. Published 2022 Jul 25. doi:10.3390/bios12080562

- Haleem A, Javaid M, Singh RP, Suman R. Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet of Things and Cyber-Physical Systems. 2022;2:12-30. doi:10.1016/j.iotcps.2022.04.001

- Ali O, Abdelbaki W, Shrestha A, Elbasi E, Alryalat MAA, Dwivedi YK. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge. 2023;8(1):100333. doi:10.1016/j.jik.2023.100333

- Dang VA, Vu Khanh Q, Nguyen VH, Nguyen T, Nguyen DC. Intelligent Healthcare: Integration of Emerging Technologies and Internet of Things for Humanity. Sensors (Basel). 2023;23(9):4200. Published 2023 Apr 22. doi:10.3390/s23094200

- Alnaim AK, Alwakeel AM. Machine-Learning-Based IoT–Edge Computing healthcare solutions. Electronics. 2023;12(4):1027. doi:10.3390/electronics12041027

- Gazerani P. Intelligent Digital Twins for Personalized Migraine Care. J Pers Med. 2023;13(8):1255. Published 2023 Aug 13. doi:10.3390/jpm13081255

- Bruynseels K, Santoni de Sio F, van den Hoven J. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Front Genet. 2018;9:31. Published 2018 Feb 13. doi:10.3389/fgene.2018.00031

- Drummond D, Coulet A. Technical, Ethical, Legal, and Societal Challenges With Digital Twin Systems for the Management of Chronic Diseases in Children and Young People. J Med Internet Res. 2022;24(10):e39698. Published 2022 Oct 31. doi:10.2196/39698

- Popa EO, van Hilten M, Oosterkamp E, Bogaardt MJ. The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sci Soc Policy. 2021;17(1):6. Published 2021 Jul 5. doi:10.1186/s40504-021-00113-x

- Jacobs PG, Herrero P, Facchinetti A, et al. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Rev Biomed Eng. 2024;17:19-41. doi:10.1109/RBME.2023.3331297

- Resalat N, Youssef JE, Tyler N, Castle J, Jacobs PG. A statistical virtual patient population for the glucoregulatory system in type 1 diabetes with integrated exercise model. PLoS ONE. 2019;14(7):e0217301. doi:10.1371/journal.pone.0217301

- Cobelli C, Kovatchev B. Developing the UVA/Padova Type 1 Diabetes Simulator: modeling, validation, refinements, and utility. Journal of Diabetes Science and Technology. 2023;17(6):1493-1505. doi:10.1177/19322968231195081

- Man CD, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C. The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and Technology. 2014;8(1):26-34. doi:10.1177/193229681351450

- Visentin R, Cobelli C, Man CD. The Padova Type 2 Diabetes Simulator from Triple-Tracer Single-Meal Studies: In Silico Trials Also Possible in Rare but Not-So-Rare Individuals. Diabetes Technology & Therapeutics. 2020;22(12):892-903. doi:10.1089/dia.2020.0110

- Young GM, Jacobs PG, Tyler NS, et al. Quantifying insulin-mediated and noninsulin-mediated changes in glucose dynamics during resistance exercise in type 1 diabetes. AJP Endocrinology and Metabolism. 2023;325(3):E192-E206. doi:10.1152/ajpendo.00298.2022

- ReplayBG: a digital Twin-Based methodology to identify a personalized model from Type 1 diabetes data and simulate glucose concentrations to assess alternative therapies. IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10164140. Published November 1, 2023.

- Mosquera-Lopez C, Dodier R, Tyler NS, et al. Predicting and preventing nocturnal hypoglycemia in Type 1 diabetes using big data analytics and decision theoretic analysis. Diabetes Technology & Therapeutics. 2020;22(11):801-811. doi:10.1089/dia.2019.0458

- Mosquera-Lopez C, Roquemen-Echeverri V, Tyler NS, et al. Combining uncertainty-aware predictive modeling and a bedtime Smart Snack intervention to prevent nocturnal hypoglycemia in people with type 1 diabetes on multiple daily injections. Journal of the American Medical Informatics Association. 2023;31(1):109-118. doi:10.1093/jamia/ocad196

- - Xames MdD, Topcu TG. A Systematic Literature Review of Digital twin research for Healthcare Systems: research trends, gaps, and realization challenges. IEEE Access. 2024;12:4099-4126. doi:10.1109/access.2023.3349379

Sensing. 2022;14(6):1335. doi:10.3390/rs14061335

- Cappon G, Facchinetti A. Digital Twins in Type 1 Diabetes: A Systematic Review. J Diabetes Sci Technol. Published online June 17, 2024. doi:10.1177/19322968241262112

- Tian T, Aaron RE, DuNova AY, et al. Diabetes Technology Meeting 2023. J Diabetes Sci Technol. 2024;18(5):1208-1244. doi:10.1177/19322968241235205

- Tyler NS, Mosquera-Lopez CM, Wilson LM, et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat Metab. 2020;2(7):612-619. doi:10.1038/s42255-020-0212-y

- Castle JR, Wilson LM, Tyler NS, et al. Assessment of a Decision Support System for Adults with Type 1 Diabetes on Multiple Daily Insulin Injections. Diabetes Technology & Therapeutics. 2022;24(12):892-897. doi:10.1089/dia.2022.0252

- Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. Published 2020 Aug 30. doi:10.3390/ijms21176275

- Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes [published correction appears in Lancet. 2017 Jun 3;389(10085):2192. doi: 10.1016/S0140-6736(17)30539-1.]. Lancet. 2017;389(10085):2239-2251. doi:10.1016/S0140-6736(17)30058-2

- - DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. Published 2015 Jul 23. doi:10.1038/nrdp.2015.19

- Stolar M. Glycemic control and complications in type 2 diabetes mellitus. Am J Med. 2010;123(3 Suppl):S3-S11. doi:10.1016/j.amjmed.2009.12.00

- American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917-928. doi:10.2337/dci18-0007

- Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data. 2023;10(1):67. Published 2023 Feb 2. doi:10.1038/s41597-023-01960-3

- Fecho K, Thessen AE, Baranzini SE, et al. Progress toward a universal biomedical data translator. Clin Transl Sci. 2022;15(8):1838-1847. doi:10.1111/cts.13301

- Morris JH, Soman K, Akbas RE, et al. The scalable precision medicine open knowledge engine (SPOKE): a massive knowledge graph of biomedical information. Bioinformatics. 2023;39(2):btad080. doi:10.1093/bioinformatics/btad080

- Zhang Y, Qin G, Aguilar B, et al. A framework towards digital twins for type 2 diabetes. Front Digit Health. 2024;6:1336050. Published 2024 Jan 26. doi:10.3389/fdgth.2024.1336050

- Joshi SR, Saboo B, Vadivale M, et al. Prevalence of diagnosed and undiagnosed diabetes and hypertension in India--results from the Screening India's Twin Epidemic (SITE) study. Diabetes Technol Ther. 2012;14(1):8-15. doi:10.1089/dia.2011.0243

- Passarella P, Kiseleva TA, Valeeva FV, Gosmanov AR. Hypertension Management in Diabetes: 2018 Update. Diabetes Spectr. 2018;31(3):218-224. doi:10.2337/ds17-0085

- Berlowitz DR, Ash AS, Hickey EC, Glickman M, Friedman R, Kader B. Hypertension management in patients with diabetes: the need for more aggressive therapy. Diabetes Care. 2003;26(2):355-359. doi:10.2337/diacare.26.2.355

- Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313(6):603-615. doi:10.1001/jama.2014.18574

- Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351(9118):1755-1762. doi:10.1016/s0140-6736(98)04311-6

- Wang J, Geiss LS, Cheng YJ, et al. Long-term and recent progress in blood pressure levels among U.S. adults with diagnosed diabetes, 1988-2008. Diabetes Care. 2011;34(7):1579-1581. doi:10.2337/dc11-0178

- UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group [published correction appears in BMJ 1999 Jan 2;318(7175):29]. BMJ. 1998;317(7160):703-713.

- Mogensen CE. Combined high blood pressure and glucose in type 2 diabetes: double jeopardy. British trial shows clear effects of treatment, especially blood pressure reduction. BMJ. 1998;317(7160):693-694. doi:10.1136/bmj.317.7160.693

- The fifth report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med. 1993;153(2):154-183.

- Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Hypertension. 2018 Jun;71(6):e140-e144. doi: 10.1161/HYP.0000000000000076.]. Hypertension. 2018;71(6):e13-e115. doi:10.1161/HYP.0000000000000065

- Oparil S, Acelajado MC, Bakris GL, et al. Hypertension. Nat Rev Dis Primers. 2018;4:18014. Published 2018 Mar 22. doi:10.1038/nrdp.2018.14

- Guerrero-García C, Rubio-Guerra AF. Combination therapy in the treatment of hypertension. Drugs Context. 2018;7:212531. Published 2018 Jun 6. doi:10.7573/dic.212531

- Alexander M, Tekawa I, Hunkeler E, et al. Evaluating hypertension control in a managed care setting. Arch Intern Med. 1999;159(22):2673-2677. doi:10.1001/archinte.159.22.2673

- Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia Drivers: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(5):525-538. doi:10.1016/j.jacc.2019.11.044

- Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-Based Chronic Disease, Addressing Knowledge and Clinical Practice Gaps: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(5):539-555. doi:10.1016/j.jacc.2019.11.046

- Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42(5):878-884. doi:10.1161/01.HYP.0000094221.86888.AE

- Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium Intake and Hypertension. Nutrients. 2019;11(9):1970. Published 2019 Aug 21. doi:10.3390/nu11091970

- Alpsoy Ş. Exercise and Hypertension. Adv Exp Med Biol. 2020;1228:153-167. doi:10.1007/978-981-15-1792-1_10

- Joshi S, Shamanna P, Dharmalingam M, et al. Digital Twin-Enabled Personalized Nutrition Improves Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes: Results of a 1-Year Randomized Controlled Study. Endocr Pract. 2023;29(12):960-970. doi:10.1016/j.eprac.2023.08.016

- Franz MJ. Weight Management: Obesity to Diabetes. Diabetes Spectr. 2017;30(3):149-153. doi:10.2337/ds17-0011

- Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. Published 2019 May 13. doi:10.3390/ijms20092358

- Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation. 2011;124(24):e837-e841. doi:10.1161/CIRCULATIONAHA.111.077602

- Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin Resistance the Hinge Between Hypertension and Type 2 Diabetes. High Blood Press Cardiovasc Prev. 2020;27(6):515-526. doi:10.1007/s40292-020-00408-8

- Samajdar S, Mukherjee S, Begum S, Sen S, Tripathi S. Anthropometric measures in risk prediction for type 2 diabetes mellitus? - A cross-sectional study in regular athletes. Document - Gale Academic OneFile. https://go.gale.com/ps/i.do?id=GALE%7CA662732081&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=22784292&p=AONE&sw=w&userGroupName=anon%7Ee97cfd71&aty=open-web-entry. Published April 1, 2021.

- Shamanna P, Joshi S, Dharmalingam M, et al. Digital Twin in Managing Hypertension Among People With Type 2 Diabetes: 1-Year Randomized Controlled Trial. JACC Adv. 2024;3(9):101172. Published 2024 Aug 14. doi:10.1016/j.jacadv.2024.101172

- Botín-Sanabria DM, Mihaita AS, Peimbert-García RE, Ramírez-Moreno MA, Ramírez-Mendoza RA, De J Lozoya-Santos J. Digital Twin Technology Challenges and Applications: A Comprehensive review. Remote Sensing. 2022;14(6):1335. doi:10.3390/rs14061335

Published

August 5, 2025