Potencjał zimnej plazmy atmosferycznej w przełamywaniu lekooporności nowotworów
Keywords:
lekooporność, nowotwór, RONS, zimna plazma atmosferycznaSynopsis
Lekooporność jest dużym wyzwaniem w onkologii i od dawna poszukuje się metod jej zwalczania oraz zapobiegania. Komórki nowotworowe mogą ją wykształcać poprzez różne mechanizmy takie jak wzmożona ekspresja pomp usuwających leki z komórek, nadmierna aktywacja szlaków sygnałowych w komórkach, obecność chemiopornych komórek macierzystych nowotworu (Cancer Stem Cells, CSCs) oraz inne. Zimna plazma atmosferyczna (Cold Atmospheric Plasma, CAP) wydaje się być bardzo obiecującym narzędziem do przełamywania oporności nowotworów na leki. Jej podstawowym mechanizmem działania w zabijaniu komórek nowotworowych jest generowanie reaktywnych form tlenu i azotu (Reactive Oxygen and Nitrogen Species, RONS) uszkadzających DNA, białka i inne biocząsteczki tych komórek. W tym przeglądzie zawarte są wybrane badania przedkliniczne nad potencjałem połączenia CAP z popularnymi lekami przeciwnowotworowymi wykorzystywanymi w chemioterapii, takimi jak cisplatyna, doksorubicyna, paklitaksel czy temozolomid w zwalczaniu różnych nowotworów, w tym lekoopornych. Prawie wszystkie eksperymenty były prowadzone w warunkach in vitro i oceniały różne aspekty oraz badały różne mechanizmy tej terapii. Ich rezultaty są obiecujące, jednak konieczne są dalsze badania w tym zakresie, ponieważ istnieją też pewne wyzwania, z którymi należy się zmierzyć przed włączeniem tego leczenia u pacjentów w przyszłości.
References
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299-309. doi:10.1038/s41586-019-1730-11.
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer. 2022;22(6):323-339. doi:10.1038/s41568-022-00454-5
Chitcholtan K, Asselin E, Parent S, Sykes PH, Evans JJ. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Experimental Cell Research. 2013;319(1):75-87. doi:10.1016/j.yexcr.2012.09.012
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomedicine & Pharmacotherapy. 2023;162:114643. doi:10.1016/j.biopha.2023.114643
Emami Nejad A, Najafgholian S, Rostami A, i in. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 2021;21(1). doi:10.1186/s12935-020-01719-5
Kato et al. Cancer Cell International 2013, 13:89 http://www.cancerci.com/content/13/1/89
Liu J, Yuan Y, Cheng Y, i in. Copper-Based Metal–Organic Framework Overcomes Cancer Chemoresistance through Systemically Disrupting Dynamically Balanced Cellular Redox Homeostasis. J Am Chem Soc. 2022;144(11):4799-4809. doi:10.1021/jacs.1c11856
Caccuri F, Sommariva M, Marsico S, i in. Inhibition of DNA Repair Mechanisms and Induction of Apoptosis in Triple Negative Breast Cancer Cells Expressing the Human Herpesvirus 6 U94. Cancers. 2019;11(7):1006. doi:10.3390/cancers11071006
Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers. 2021;13(17):4363. doi:10.3390/cancers13174363
Bernhardt T, Semmler ML, Schäfer M, Bekeschus S, Emmert S, Boeckmann L. Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. Oxidative Medicine and Cellular Longevity. 2019;2019:1-10. doi:10.1155/2019/3873928
Shahzad A, Hanif F, Manzoor A, Ain Asif QU. Introductory Chapter: Progress of Plasma Physics and Allied Technologies in Daily Life Applications. Advancements in Fine Particle Plasmas. Published online 13 marzec 2024. doi:10.5772/intechopen.1002628
Khlyustova A, Labay C, Machala Z, Ginebra MP, Canal C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Front Chem Sci Eng. 2019;13(2):238-252. doi:10.1007/s11705-019-1801-8
Tan F, Rui X, Xiang X, Yu Z, Al‐Rubeai M. Multimodal treatment combining cold atmospheric plasma and acidic fibroblast growth factor for multi‐tissue regeneration. FASEB j. 2021;35(5). doi:10.1096/fj.202002611r
Amini MR, Sheikh Hosseini M, Fatollah S, i in. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. J Diabetes Metab Disord. 2020;19(2):895-905. doi:10.1007/s40200-020-00577-2
Borchardt T, Ernst J, Helmke A, i in. Effect of direct cold atmospheric plasma (diCAP) on microcirculation of intact skin in a controlled mechanical environment. Microcirculation. 2017;24(8). doi:10.1111/micc.12399
Eisenhauer P, Chernets N, Song Y, i in. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation. J Tissue Eng Regen Med. 2016;10(9):772-782. doi:10.1002/term.2224
Dubuc A, Monsarrat P, Virard F, i in. Use of cold-atmospheric plasma in oncology: a concise systematic review. Ther Adv Med Oncol. 2018;10. doi:10.1177/1758835918786475
Zhang X, Wang M, Feng J, i in. Multifunctional nanoparticles co-loaded with Adriamycin and MDR-targeting siRNAs for treatment of chemotherapy-resistant esophageal cancer. J Nanobiotechnol. 2022;20(1). doi:10.1186/s12951-022-01377-x
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. JCM. 2021;10(4):893. doi:10.3390/jcm10040893
Bauer G. The synergistic effect between hydrogen peroxide and nitrite, two long-lived molecular species from cold atmospheric plasma, triggers tumor cells to induce their own cell death. Redox Biology. 2019;26:101291. doi:10.1016/j.redox.2019.101291
Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasma Sources Sci Technol. 2014;23(1):015019. doi:10.1088/0963-0252/23/1/015019
de Sá Junior PL, Câmara DAD, Porcacchia AS, i in. The Roles of ROS in Cancer Heterogeneity and Therapy. Maraldi T, red. Oxidative Medicine and Cellular Longevity. 2017;2017(1). doi:10.1155/2017/2467940
Khlyustova A, Labay C, Machala Z, Ginebra MP, Canal C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Front Chem Sci Eng. 2019;13(2):238-252. doi:10.1007/s11705-019-1801-8
Kurake N, Tanaka H, Ishikawa K, i in. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Archives of Biochemistry and Biophysics. 2016;605:102-108. doi:10.1016/j.abb.2016.01.011
Kumari S, Badana AK, G MM, G S, Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomark�Insights. 2018;13. doi:10.1177/1177271918755391
Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes & Diseases. 2016;3(3):198-210. doi:10.1016/j.gendis.2016.04.007
Moody C, Wheelhouse R. The Medicinal Chemistry of Imidazotetrazine Prodrugs. Pharmaceuticals. 2014;7(7):797-838. doi:10.3390/ph7070797
Murillo D, Huergo C, Gallego B, Rodríguez R, Tornín J. Exploring the Use of Cold Atmospheric Plasma to Overcome Drug Resistance in Cancer. Biomedicines. 2023;11(1):208. doi:10.3390/biomedicines11010208
Hanif F, Muzaffar K, Perveen kahkashan, Malhi S, Simjee S. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. APJCP. 2017;18(1). doi:10.22034/APJCP.2017.18.1.3
Shaw P, Kumar N, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage. Cancers. 2021;13(8):1780. doi:10.3390/cancers13081780
Köritzer J, Boxhammer V, Schäfer A, i in. Restoration of Sensitivity in Chemo — Resistant Glioma Cells by Cold Atmospheric Plasma. Lim M, red. PLoS ONE. 2013;8(5):e64498. doi:10.1371/journal.pone.0064498
Haar CP, Hebbar P, Wallace GC IV, i in. Drug Resistance in Glioblastoma: A Mini Review. Neurochem Res. 2012;37(6):1192-1200. doi:10.1007/s11064-011-0701-1
Gjika E, Pal-Ghosh S, Kirschner ME, i in. Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-73457-7
Soni V, Adhikari M, Simonyan H, i in. In Vitro and In Vivo Enhancement of Temozolomide Effect in Human Glioblastoma by Non-Invasive Application of Cold Atmospheric Plasma. Cancers. 2021;13(17):4485. doi:10.3390/cancers13174485
Kopacz-Bednarska A, Król T. Cisplatin — properties and clinical application. Oncol Clin Pract. Published online 31 maj 2022. doi:10.5603/ocp.2022.0020
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry. 2019;88:102925. doi:10.1016/j.bioorg.2019.102925
Lugones Y, Loren P, Salazar LA. Cisplatin Resistance: Genetic and Epigenetic Factors Involved. Biomolecules. 2022;12(10):1365. doi:10.3390/biom12101365
Brunner TF, Probst FA, Troeltzsch M, i in. Primary cold atmospheric plasma combined with low dose cisplatin as a possible adjuvant combination therapy for HNSCC cells—an in-vitro study. Head Face Med. 2022;18(1). doi:10.1186/s13005-022-00322-5
Li Y, Tang T, Lee HJ, Song K. Selective Anti-Cancer Effects of Plasma-Activated Medium and Its High Efficacy with Cisplatin on Hepatocellular Carcinoma with Cancer Stem Cell Characteristics. IJMS. 2021;22(8):3956. doi:10.3390/ijms22083956
Sritharan S, Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sciences. 2021;278:119527. doi:10.1016/j.lfs.2021.119527
Sagwal SK, Pasqual-Melo G, Bodnar Y, Gandhirajan RK, Bekeschus S. Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis. 2018;9(12). doi:10.1038/s41419-018-1221-6
Zahedian S, Hekmat A, i in. The Impacts of Prepared Plasma-Activated Medium (PAM) Combined with Doxorubicin on the Viability of MCF-7 Breast Cancer Cells: A New Cancer Treatment Strategy. rbmb.net. 2022;10(4):640-652. doi:10.52547/rbmb.10.4.640
Mateu-Sanz M, Ginebra MP, Tornín J, Canal C. Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radical Biology and Medicine. 2022;189:32-41. doi:10.1016/j.freeradbiomed.2022.07.007
Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24(1). doi:10.1186/s11658-019-0164-y
Sharifi-Rad J, Quispe C, Patra JK, i in. Paclitaxel: Application in Modern Oncology and Nanomedicine‐Based Cancer Therapy. De Oliveira FL, red. Oxidative Medicine and Cellular Longevity. 2021;2021(1). doi:10.1155/2021/3687700
Weaver BA. How Taxol/paclitaxel kills cancer cells. Bement W, red. MBoC. 2014;25(18):2677-2681. doi:10.1091/mbc.e14-04-0916
Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24(1). doi:10.1186/s11658-019-0164-y
Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C. Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treatment Reviews. 2012;38(7):890-903. doi:10.1016/j.ctrv.2012.02.011
Froidevaux-Klipfel L, Targa B, Cantaloube I, Ahmed-Zaïd H, Poüs C, Baillet A. Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget. 2015;6(34):36063-36080. doi:10.18632/oncotarget.5373
Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol. 2021;12. doi:10.3389/fphar.2021.628690
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Seminars in Cancer Biology. 2019;59:147-160. doi:10.1016/j.semcancer.2019.05.012
Mihai CT, Mihaila I, Pasare MA, Pintilie RM, Ciorpac M, Topala I. Cold Atmospheric Plasma-Activated Media Improve Paclitaxel Efficacy on Breast Cancer Cells in a Combined Treatment Model. CIMB. 2022;44(5):1995-2014. doi:10.3390/cimb44050135
Park S, Kim H, Ji HW, i in. Cold Atmospheric Plasma Restores Paclitaxel Sensitivity to Paclitaxel-Resistant Breast Cancer Cells by Reversing Expression of Resistance-Related Genes. Cancers. 2019;11(12):2011. doi:10.3390/cancers11122011
Ganesan M, Kanimozhi G, Pradhapsingh B, i in. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomedicine & Pharmacotherapy. 2021;139:111632. doi:10.1016/j.biopha.2021.111632
Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. IJMS. 2023;24(7):6199. doi:10.3390/ijms24076199
Ye F, Dewanjee S, Li Y, i in. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22(1). doi:10.1186/s12943-023-01805-y
Mendes I, Vale N. How Can the Microbiome Induce Carcinogenesis and Modulate Drug Resistance in Cancer Therapy? IJMS. 2023;24(14):11855. doi:10.3390/ijms241411855
Jones O, Cheng X, Murthy SRK, i in. The synergistic effect of Canady Helios cold atmospheric plasma and a FOLFIRINOX regimen for the treatment of cholangiocarcinoma in vitro. Sci Rep. 2021;11(1). doi:10.1038/s41598-021-88451-w
Lee S, Lee H, Jeong D, i in. Cold atmospheric plasma restores tamoxifen sensitivity in resistant MCF-7 breast cancer cell. Free Radical Biology and Medicine. 2017;110:280-290. doi:10.1016/j.freeradbiomed.2017.06.017
Published
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.