Mądrość mięczaków i stawonogów, czyli o egzoszkieletach oraz ich wykorzystaniu w medycynie
Słowa kluczowe:
Egzoszkielet, ergonomia, wydajność, choroby nerwowo-mięśniowe, RehabilitacjaStreszczenie
Praca ta traktuje o egzoszkieletach, swego rodzaju urządzeniach, które wkładającemu je na siebie człowiekowi umożliwiają wykonywanie dotychczas niemożliwych dla niego czynności lub usprawniają te, które potrafi. Opisano w niej ich zalety oraz wady poparte przykładami prac opisującymi użycie i użyteczność szkieletów zewnętrznych w różnych obszarach medycyny. Przeanalizowane i przedstawione artykuły naukowe pochodzą z baz danych PubMed oraz Embase. Po przestudiowaniu literatury nasuwające się wnioski są optymistyczne. Oparte bowiem na skuteczności prowadzonych eksperymentów zdają się dawać zielone światło dla szerszego zastosowania tej technologii. Szczególne jej zastosowanie widać we wspomaganiu czynności ruchowych u pacjentów w tej sferze niedomagających oraz u pracowników fizycznych. Istniejące mankamenty wychwytywane w czasie badań prowokują do zachowania zdrowej dozy sceptycyzmu połączonej z chęcią dalszego rozwoju i doskonalenia. Idea wdrożenia tej technologii do świata medycyny jest trafna i entuzjastycznie przyjmowana. Od nowocześniejszych sprzętów przyszłości oczekuje się eliminacji istniejących obecnie niedociągnięć oraz ich szerszego dostępu aby służyć mogły większej niż obecnie części populacji.
This work deals with exoskeletons, a kind of device that, when put on, enables a person to perform activities previously impossible for him or improve those he can. It describes their advantages and disadvantages supported by examples of works describing the use and utility of exoskeletons in various areas of medicine. The scientific articles analyzed and presented are from PubMed and Embase databases. After studying the literature, the conclusions that emerge are optimistic. This is because, based on the effectiveness of the experiments conducted, they seem to give a green light for the wider application of this technology. Its particular application can be seen in the support of motor activities in patients who are deficient in this sphere and in manual workers. Existing shortcomings picked up during the research provoke a healthy dose of skepticism combined with a desire for further development and improvement. The idea of implementing this technology into the medical world is apt and enthusiastically welcomed. The more modern equipment of the future is expected to address current shortcomings and to be more widely available to serve a larger proportion of the population than is currently the case.
Bibliografia
US420179A - Apparatus for facilitating walking - Google Patents. Published January 28, 1890. https://patents.google.com/patent/US420179A/en.
Rahman T, Sample W, Seliktar R, et al. Design and testing of a functional arm orthosis in patients with neuromuscular diseases. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(2):244-251. doi:10.1109/tnsre.2007.897026
Brzozowski TM, Partner EU&. Konturek fizjologia człowieka.; 2019.
Hammer S, Toussaint M, Vollsæter M, et al. Exercise Training in Duchenne Muscular Dystrophy: A Systematic Review and Meta-Analysis. Journal of Rehabilitation Medicine. Published online December 2, 2021. doi:10.2340/jrm.v53.985
Brussock CM, Haley SM, Munsat TL, Bernhardt DB. Measurement of Isometric Force in Children with and without Duchenne’s Muscular Dystrophy. Physical Therapy. 1992;72(2):105-114. doi:10.1093/ptj/72.2.105
Pascual‐Morena C, Martínez‐Vizcaíno V, Cavero‐Redondo I, et al. Efficacy of risdiplam in spinal muscular atrophy: A systematic review and meta‐analysis. Pharmacotherapy the Journal of Human Pharmacology and Drug Therapy. 2023;44(1):97-105. doi:10.1002/phar.2866
Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cellular and Molecular Life Sciences. 2018;75(21):3877-3894. doi:10.1007/s00018-018-2849-1
Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders. 2017;28(2):103-115. doi:10.1016/j.nmd.2017.11.005
Kilmer DD, Abresch RT, Fowler WM. Serial manual muscle testing in Duchenne muscular dystrophy. PubMed. 1993;74(11):1168-1171. https://pubmed.ncbi.nlm.nih.gov/8239956
Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. PubMed. 1969;50(6):311-319. https://pubmed.ncbi.nlm.nih.gov/5788487
Kawamoto H, Hayashi T, Sakurai T, Eguchi K, Sankai Y. Development of single leg version of HAL for hemiplegia. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Published online September 1, 2009:5038-5043. doi:10.1109/iembs.2009.5333698
Pacifico I, Parri A, Taglione S, et al. Exoskeletons for workers: A case series study in an enclosures production line. Applied Ergonomics. 2022;101:103679. doi:10.1016/j.apergo.2022.103679
Pacifico I, Scano A, Guanziroli E, et al. An experimental evaluation of the Proto-MATE: a novel ergonomic Upper-Limb exoskeleton to reduce workers’ physical strain. IEEE Robotics & Automation Magazine. 2020;27(1):54-65. doi:10.1109/mra.2019.2954105
Alabdulkarim S, Nussbaum MA. Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task. Applied Ergonomics. 2018;74:55-66. doi:10.1016/j.apergo.2018.08.004
Blanco A, Catalán JM, Díez JA, García JV, Lobato E, García-Aracil N. Electromyography Assessment of the assistance provided by an Upper-Limb exoskeleton in maintenance tasks. Sensors. 2019;19(15):3391. doi:10.3390/s19153391
Huysamen K, Bosch T, De Looze M, Stadler KS, Graf E, O’Sullivan LW. Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomics. 2018;70:148-155. doi:10.1016/j.apergo.2018.02.009
Hyun DJ, Bae K, Kim K, Nam S, Lee DH. A light-weight passive upper arm assistive exoskeleton based on multi-linkage spring-energy dissipation mechanism for overhead tasks. Robotics and Autonomous Systems. 2019;122:103309. doi:10.1016/j.robot.2019.103309
Kelson DM, Kim S, Nussbaum MA, Srinivasan D. Effects of passive Upper-Extremity exoskeleton use on motor performance in a precision task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2019;63(1):1084-1085. doi:10.1177/1071181319631437
Kim S, Nussbaum MA, Esfahani MIM, Alemi MM, Alabdulkarim S, Rashedi E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I – “Expected” effects on discomfort, shoulder muscle activity, and work task performance. Applied Ergonomics. 2018;70:315-322. doi:10.1016/j.apergo.2018.02.025
Kim S, Nussbaum MA, Esfahani MIM, Alemi MM, Jia B, Rashedi E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II – “Unexpected” effects on shoulder motion, balance, and spine loading. Applied Ergonomics. 2018;70:323-330. doi:10.1016/j.apergo.2018.02.024
Kim S, Nussbaum MA. A Follow-Up study of the effects of an arm support exoskeleton on physical demands and task performance during simulated overhead work. IISE Transactions on Occupational Ergonomics and Human Factors. 2019;7(3-4):163-174. doi:10.1080/24725838.2018.1551255
Maurice P, Camernik J, Gorjan D, et al. Objective and subjective effects of a passive exoskeleton on overhead work. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2019;28(1):152-164. doi:10.1109/tnsre.2019.2945368
Otten BM, Weidner R, Argubi-Wollesen A. Evaluation of a novel active exoskeleton for tasks at or above head level. IEEE Robotics and Automation Letters. 2018;3(3):2408-2415. doi:10.1109/lra.2018.2812905
Schmalz T, Schändlinger J, Schuler M, et al. Biomechanical and metabolic effectiveness of an industrial exoskeleton for overhead work. International Journal of Environmental Research and Public Health. 2019;16(23):4792. doi:10.3390/ijerph16234792
Theurel J, Desbrosses K, Roux T, Savescu A. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Applied Ergonomics. 2017;67:211-217. doi:10.1016/j.apergo.2017.10.008
Cha JS, Athanasiadis DI, Asadi H, Stefanidis D, Nussbaum MA, Yu D. Evaluation of a passive arm-support exoskeleton for surgical team members: Results from live surgeries. Journal of Safety Research. 2024;89:322-330. doi:10.1016/j.jsr.2024.02.003
Nutz E, Jarvers JS, Theopold J, Kleber C, Osterhoff G. Effect of an upper body exoskeleton for surgeons on postoperative neck, back and shoulder complaints. Journal of Occupational Health. Published online April 17, 2024. doi:10.1093/joccuh/uiae020
Vernon H. The Neck Disability Index: State-of-the-Art, 1991-2008. Journal of Manipulative and Physiological Therapeutics. 2008;31(7):491-502. doi:10.1016/j.jmpt.2008.08.006
Fairbank JCT, Pynsent PB. The Oswestry Disability Index. Spine. 2000;25(22):2940-2953. doi:10.1097/00007632-200011150-00017
Roach KE, Budiman‐Mak E, Songsiridej N, Lertratanakul Y. Development of a shoulder pain and disability index. Arthritis & Rheumatism. 1991;4(4):143-149. doi:10.1002/art.1790040403
Weston EB, Alizadeh M, Knapik GG, Wang X, Marras WS. Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Applied Ergonomics. 2017;68:101-108. doi:10.1016/j.apergo.2017.11.006
Rashedi E, Kim S, Nussbaum MA, Agnew MJ. Ergonomic evaluation of a wearable assistive device for overhead work. Ergonomics. 2014;57(12):1864-1874. doi:10.1080/00140139.2014.952682
De Looze MP, Bosch T, Krause F, Stadler KS, O’Sullivan LW. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics. 2015;59(5):671-681. doi:10.1080/00140139.2015.1081988
Exoskeletons in Construction: Will they reduce or create hazards? | Blogs | CDC. Published November 25, 2024. https://blogs.cdc.gov/niosh-science-blog/2017/06/15/exoskeletons-in-construction/
Biologia Campbella.; 2016.
Opublikowane
Licencja

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.