Białko tau - postęp strategii w leczeniu choroby Alzheimera
Słowa kluczowe:
neurologia, choroby degeneracyjne, choroba alzheimera, białko tauStreszczenie
Demencja, zaburzenia otępienne to jednostki chorobowe, które utrudniają znacznie chorym codzienne funkcjonowanie, a także mogą w szczególnych przypadkach narażać ich oraz ich bliskich na niebezpieczeństwo. Ze względu na starzejące się społeczeństwo, szacuje się, iż liczba pacjentów z chorobą Alzheimera wzrośnie dwukrotnie do 2050 r. Ta przewlekle postępująca choroba, w której chorzy tracą osobowość i orientację oraz zapominają o podstawowych rzeczach, zainteresowała wielu lekarzy, którzy zaczęli obserwować jej przebieg i objawy. Rozwój nowych metod badawczych tj. mikroskop elektronowy czy badania histologiczne, umożliwiły dokładniejsze badanie anatomii mózgu i poznawanie patomechanizmu tego schorzenia. Dziś badania wskazują na istnienie dwóch kluczowych struktur biorących udział w patofizjologii choroby Alzheimera – β-amyloidu oraz białka tau. Nagromadzenie amyloidu w płytkach nerwowych oraz splątki fibrylarne powstałe wskutek odkładania się białka tau w cytoplazmie neuronów, prowadzą do neurodegeneracji. Dotychczas nie istnieje lek, dający szansę na całkowicie wyleczenie. Obecna farmakoterapia chorych skupia się na leczeniu objawowym, która w pewnym stopniu i do pewnego czasu pozwala na lepszy komfort życia. Naukowcy dążą do stworzenia terapii, która będzie ograniczała powstawanie zmian neurodegeneracyjnych oraz cofała te, które zdążyły się utworzyć. Celem tej pracy jest przybliżenie tematu patofizjologii choroby Alzheimera, a zwłaszcza zaprezentowanie białka tau i jego roli w toczących się patomechanizmach oraz przedstawienie aktualnych badań i postępów w leczeniu chorych na chorobę Alzheimera.
Bibliografia
Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol Ther. 2022;11(2):553-569. doi:10.1007/s40120-022-00338-8
Simon Long, Chloé Benoist, Wendy Weidner. World Alzheimer Report 2023. Reducing Dementia Risk: Never Too Early, Never Too Late.
2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19(4):1598-1695. doi:10.1002/alz.13016
Polskie Stowarzyszenie Pomocy Osobom z Chorobą Alzheimera. Dlaczego Polska zamiata pod dywan problem Choroby Alzheimera i innych demencji? Published online March 18, 2024.
Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci. 2016;18(4):437-446. doi:10.31887/DCNS.2016.18.4/cepperson
Vatanabe IP, Manzine PR, Cominetti MR. Historic concepts of dementia and Alzheimer’s disease: From ancient times to the present. Rev Neurol (Paris). 2020;176(3):140-147. doi:10.1016/j.neurol.2019.03.004
Boller F, Forbes MM. History of dementia and dementia in history: an overview. J Neurol Sci. 1998;158(2):125-133. doi:10.1016/s0022-510x(98)00128-2
Donnet, A., Focin, J., Habib, M. De´mence et Vieillissement Cerebral: E´volution Des Concepts de La´ntiquite´ A` Nos Jours. Paris: Masson (E´diteur), 1991. In: Caixeta, L. Deˆmencia– Abordagem Multidisciplinar. Sa˜o Paulo: Editora Atheneu, 2006.
Berrios GE. The History of Mental Symptoms: Descriptive Psychopathology since the Nineteenth Century. Cambridge: Cambridge University Press; 1996: 242–59.
Lipowski ZJ. Organic Mental Disorders—An American Perspective. Br J Psychiatry. 1984;144(5):542-546. doi:10.1192/bjp.144.5.542
Shorter E. History of psychiatry. Curr Opin Psychiatry. 2008;21(6):593-597. doi:10.1097/YCO.0b013e32830aba12
Schwartz MF, Stark JA. The distinction between Alzheimer’s disease and senile dementia: Historical considerations 1. J Hist Neurosci. 1992;1(3):169-187. doi:10.1080/09647049209525531
Pereira MEC. Kraepelin e a criação do conceito de “Demência precoce.” Rev Latinoam Psicopatol Fundam. 2001;4(4):126-129. doi:10.1590/1415-47142001004011
Pitt L, Smith CH. Probability and plurality for aggregations of learning machines. In: Ottmann T, ed. Automata, Languages and Programming. Vol 267. Springer Berlin Heidelberg; 1987:1-10. Accessed May 1, 2024. http://link.springer.com/10.1007/3-540-18088-5_1
Jennekens FGI. A short history of the notion of neurodegenerative disease. J Hist Neurosci. 2014;23(1):85-94. doi:10.1080/0964704X.2013.809297
Ramirez-Bermudez J. Alzheimer’s Disease: Critical Notes on the History of a Medical Concept. Arch Med Res. 2012;43(8):595-599. doi:10.1016/j.arcmed.2012.11.008
Jellinger KA. Alzheimer 100 – highlights in the history of Alzheimer research. J Neural Transm. 2006;113(11):1603-1623. doi:10.1007/s00702-006-0578-3
Parkinson J. An Essay on the Shaking Palsy. J Neuropsychiatry Clin Neurosci. 2002;14(2):223-236. doi:10.1176/jnp.14.2.223
Huntington G. On Chorea. J Neuropsychiatry Clin Neurosci. 2003;15(1):109-112. doi:10.1176/jnp.15.1.109
Cipriani G, Danti S, Carlesi C. Three men in a (same) boat: Alzheimer, Pick, Lewy. Historical notes. Eur Geriatr Med. 2016;7(6):526-530. doi:10.1016/j.eurger.2016.08.001
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Fifth Edition. American Psychiatric Association; 2013. Accessed May 6, 2024. https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
Anil Kumar; Jaskirat Sidhu; Amandeep Goyal; Jack W. Tsao. Alzheimer Disease.
Fortea J, Zaman SH, Hartley S, Rafii MS, Head E, Carmona-Iragui M. Alzheimer’s disease associated with Down syndrome: a genetic form of dementia. Lancet Neurol. 2021;20(11):930-942. doi:10.1016/S1474-4422(21)00245-3
He Z, Guo JL, McBride JD, et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med. 2018;24(1):29-38. doi:10.1038/nm.4443
Lewis J, Dickson DW, Lin WL, et al. Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP. Science. 2001;293(5534):1487-1491. doi:10.1126/science.1058189
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci. 2020;23(10):1183-1193. doi:10.1038/s41593-020-0687-6
Wang L, Benzinger TL, Su Y, et al. Evaluation of Tau Imaging in Staging Alzheimer Disease and Revealing Interactions Between β-Amyloid and Tauopathy. JAMA Neurol. 2016;73(9):1070. doi:10.1001/jamaneurol.2016.2078
Roberson ED, Scearce-Levie K, Palop JJ, et al. Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer’s Disease Mouse Model. Science. 2007;316(5825):750-754. doi:10.1126/science.1141736
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82(4):239-259. doi:10.1007/BF00308809
Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci. 1975;72(5):1858-1862. doi:10.1073/pnas.72.5.1858
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work. Brain Res Rev. 2000;33(1):95-130. doi:10.1016/S0165-0173(00)00019-9
Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D. Structure and Pathology of Tau Protein in Alzheimer Disease. Int J Alzheimers Dis. 2012;2012:1-13. doi:10.1155/2012/731526
Avila J, Lucas JJ, Pérez M, Hernández F. Role of Tau Protein in Both Physiological and Pathological Conditions. Physiol Rev. 2004;84(2):361-384. doi:10.1152/physrev.00024.2003
Pîrşcoveanu DFV, Pirici I, Tudorică V, et al. Tau protein in neurodegenerative diseases - a review. Romanian J Morphol Embryol Rev Roum Morphol Embryol. 2017;58(4):1141-1150.
Dixit R, Ross JL, Goldman YE, Holzbaur ELF. Differential Regulation of Dynein and Kinesin Motor Proteins by Tau. Science. 2008;319(5866):1086-1089. doi:10.1126/science.1152993
Yamauchi PS, Purich DL. Microtubule-Associated Protein Interactions with Actin Filaments: Evidence for Differential Behavior of Neuronal MAP-2 and Tau in the Presence of Phosphatidylinositol. Biochem Biophys Res Commun. 1993;190(3):710-715. doi:10.1006/bbrc.1993.1107
Selden SC, Pollard TD. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem. 1983;258(11):7064-7071.
Henríquez JP, Cross D, Vial C, Maccioni RB. Subpopulations of tau interact with microtubules and actin filaments in various cell types. Cell Biochem Funct. 1995;13(4):239-250. doi:10.1002/cbf.290130404
Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome. Neuron. 2012;73(6):1216-1227. doi:10.1016/j.neuron.2012.03.004
Wu JW, Hussaini SA, Bastille IM, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19(8):1085-1092. doi:10.1038/nn.4328
Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci. 1986;83(11):4044-4048. doi:10.1073/pnas.83.11.4044
Crowther RA. Tau protein and paired helical filaments of Alzheimer’s disease. Curr Opin Struct Biol. 1993;3(2):202-206. doi:10.1016/S0959-440X(05)80153-8
Mandelkow E, von Bergen M, Biernat J, Mandelkow EM. Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol Zurich Switz. 2007;17(1):83-90. doi:10.1111/j.1750-3639.2007.00053.x
Abhilash K. Desai, MD, Pratap Chand, MD, DM, FRCP. Leczenie choroby Alzheimera oparte na wpływie na białko tau. Powiew przyszłości? Psychiatr Po Dyplomie. 2009;6(6). https://podyplomie.pl/publish/system/articles/pdfarticles/000/010/341/original/36-43.pdf?1472809075
Gong CX, Iqbal K. Hyperphosphorylation of Microtubule-Associated Protein Tau: A Promising Therapeutic Target for Alzheimer Disease. Curr Med Chem. 2008;15(23):2321-2328. doi:10.2174/092986708785909111
Schoonhoven DN, Coomans EM, Millán AP, et al. Tau protein spreads through functionally connected neurons in Alzheimer’s disease: a combined MEG/PET study. Brain. 2023;146(10):4040-4054. doi:10.1093/brain/awad189
Ballatore C, Lee VMY, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663-672. doi:10.1038/nrn2194
Rojo LE, Fernández JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: Implications for the Pathogenesis and Molecular Diagnosis of Alzheimer’s Disease. Arch Med Res. 2008;39(1):1-16. doi:10.1016/j.arcmed.2007.10.001
García-Morales V, González-Acedo A, Melguizo-Rodríguez L, et al. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer’s Disease. Biomedicines. 2021;9(12):1910. doi:10.3390/biomedicines9121910
Guzior N, Wi.eckowska A, Panek D, Malawska B. Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer’s Disease. Curr Med Chem. 2014;22(3):373-404. doi:10.2174/0929867321666141106122628
Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173-177. doi:10.1038/22124
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50-56. doi:10.1038/nature19323
Office of the Commissioner. FDA grants accelerated approval for Alzheimer’s disease treatment. U.S. Food And Drug Administration. Published January 6, 2023. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment.
Beshir SA, Aadithsoorya AM, Parveen A, Goh SSL, Hussain N, Menon VB. Aducanumab Therapy to Treat Alzheimer’s Disease: A Narrative Review. Abate G, ed. Int J Alzheimers Dis. 2022;2022:1-10. doi:10.1155/2022/9343514
Roberts M, Sevastou I, Imaizumi Y, et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun. 2020;8(1):13. doi:10.1186/s40478-020-0884-2
Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021;13(1):80. doi:10.1186/s13195-021-00813-8
Van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023;388(1):9-21. doi:10.1056/NEJMoa2212948
Sims JR, Zimmer JA, Evans CD, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023;330(6):512. doi:10.1001/jama.2023.13239
Wessels AM, Siemers ER, Yu P, et al. A COMBINED MEASURE OF COGNITION AND FUNCTION FOR CLINICAL TRIALS: THE INTEGRATED ALZHEIMER’S DISEASE RATING SCALE (IADRS). J Prev Alzheimers Dis. Published online 2015:1-15. doi:10.14283/jpad.2015.82
ClinicalTrials.gov.A Study of Remternetug (LY3372993) in Participants With Alzheimer’s Disease (TRAILRUNNER-ALZ 1) https://clinicaltrials.gov/study/NCT05463731.
Nisticò R, Novakovic D, Feligioni M, et al. Profile of gantenerumab and its potential in the treatment of Alzheimer's disease. Drug Des Devel Ther. Published online November 2013:1359. doi:10.2147/DDDT.S53401
Bateman RJ, Cummings J, Schobel S, et al. Gantenerumab: an anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):178. doi:10.1186/s13195-022-01110-8
Ostrowitzki S. Mechanism of Amyloid Removal in Patients With Alzheimer Disease Treated With Gantenerumab. Arch Neurol. 2012;69(2):198. doi:10.1001/archneurol.2011.1538
Sperling RA, Donohue MC, Raman R, et al. Trial of Solanezumab in Preclinical Alzheimer’s Disease. N Engl J Med. 2023;389(12):1096-1107. doi:10.1056/NEJMoa2305032
Honig LS, Vellas B, Woodward M, et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N Engl J Med. 2018;378(4):321-330. doi:10.1056/NEJMoa1705971
How is Alzheimer’s disease treated? National Institute on Aging. Published September 12, 2023. https://www.nia.nih.gov/health/alzheimers-treatment/how-alzheimers-disease-treated.
Buccellato FR, D’Anca M, Tartaglia GM, Del Fabbro M, Scarpini E, Galimberti D. Treatment of Alzheimer’s Disease: Beyond Symptomatic Therapies. Int J Mol Sci. 2023;24(18):13900. doi:10.3390/ijms241813900
Lovestone S, Boada M, Dubois B, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis JAD. 2015;45(1):75-88. doi:10.3233/JAD-141959
Selnick HG, Hess JF, Tang C, et al. Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies. J Med Chem. 2019;62(22):10062-10097. doi:10.1021/acs.jmedchem.9b01090
Wang X, Li W, Marcus J, et al. MK-8719, a Novel and Selective O -GlcNAcase Inhibitor That Reduces the Formation of Pathological Tau and Ameliorates Neurodegeneration in a Mouse Model of Tauopathy. J Pharmacol Exp Ther. 2020;374(2):252-263. doi:10.1124/jpet.120.266122
Ye J, Wan H, Chen S, Liu GP. Targeting tau in Alzheimer’s disease: from mechanisms to clinical therapy. Neural Regen Res. 2024;19(7):1489-1498. doi:10.4103/1673-5374.385847
Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol. 2020;887:173554. doi:10.1016/j.ejphar.2020.173554
Bittar A, Bhatt N, Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis. 2020;134:104707. doi:10.1016/j.nbd.2019.104707
Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123-134. doi:10.1016/S1474-4422(16)30331-3
Novak P, Kontsekova E, Zilka N, Novak M. Ten Years of Tau-Targeted Immunotherapy: The Path Walked and the Roads Ahead. Front Neurosci. 2018;12:798. doi:10.3389/fnins.2018.00798
Ayalon G, Lee SH, Adolfsson O, et al. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease. Sci Transl Med. 2021;13(593):eabb2639. doi:10.1126/scitranslmed.abb2639
Mullard A. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat Rev Drug Discov. 2021;20(1):3-5. doi:10.1038/d41573-020-00217-7
Dam T, Boxer AL, Golbe LI, et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med. 2021;27(8):1451-1457. doi:10.1038/s41591-021-01455-x
ClinicalTrials.gov. Badanie fazy 2 BIIB092 u uczestników z wczesną chorobą Alzheimera. https://www.clinicaltrials.gov/ct2/show/NCT03352557.
ClinicalTrials.gov. Badanie mające na celu ocenę skuteczności i bezpieczeństwa ABBV-8E12 u osób z wczesną chorobą Alzheimera. https://clinicaltrials.gov/ct2/show/NCT02880956 .
West T, Hu Y, Verghese PB, et al. Preclinical and Clinical Development of ABBV-8E12, a Humanized Anti-Tau Antibody, for Treatment of Alzheimer’s Disease and Other Tauopathies. J Prev Alzheimers Dis. 2017;4(4):236-241. doi:10.14283/jpad.2017.36
ClinicalTrials.gov. Badanie LY3303560 u uczestników z wczesnymi objawami choroby Alzheimera. https://clinicaltrials.gov/ct2/show/NCT03518073 . Dostęp: 19 października 2021 r.
Younes K, Sha SJ. The most valuable player or the tombstone: is tau the correct target to treat Alzheimer’s disease? Brain. 2023;146(6):2211-2213. doi:10.1093/brain/awad151
Song C, Shi J, Zhang P, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022;11(1):18. doi:10.1186/s40035-022-00292-3
Zapowiedzi
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.