Przyszłość leczenia farmakologicznego autosomalnej dominującej wielotorbielowatości nerek
Słowa kluczowe:
ADPKD, niewydolność nerek, tolwaptan, oktreotydStreszczenie
Autosomalna dominująca wielotorbielowatość nerek (ang. Autosomal Dominant Polycystic Kidney Disease, ADPKD) stanowi istotny problem zdrowotny na całym świecie, będąc najczęstszą genetycznie uwarunkowaną chorobą nerek. 10% pacjentów wymagających terapii nerkozastępczej choruje na ADPKD. Autosomalna dominująca wielotorbielowatość nerek powstaje w wyniku mutacji w genach PKD1 lub PKD2, kodujących odpowiednio białka policystynę-1 i policystynę-2. Mutacje te zakłócają szlaki sygnalizacji komórkowej zaangażowane w rozwój nerek i ich funkcję. Dysfunkcjonalne policystyny prowadzą do nieprawidłowej proliferacji komórek i wydzielania płynu w kanalikach nerkowych, co powoduje powstawanie i ekspansję torbieli. Niski poziom wewnątrzkomórkowego wapnia i wysoki poziom cAMP nasilają wzrost torbieli. Zaburzone są liczne wewnątrzkomórkowe szlaki sygnałowe: szlak MAPK/ERK, mTOR, szlak kinazy fosfatydyloinozytolu, szlak JAK-STAT, AMPK, NF-kB. Postępujące powiększanie się torbieli upośledza czynność nerek, prowadząc do nadciśnienia, przewlekłej choroby nerek i ostatecznie schyłkowej niewydolności nerek. Pojawiające się metody leczenia farmakologicznego autosomalnej dominującej wielotorbielowatości nerek ukierunkowane są na kluczowe szlaki molekularne zaangażowane w powstawanie i progresję torbieli. Do potencjalnych leków należą antagoniści receptora wazopresyny V2, hamujący rozwój torbieli poprzez zmniejszenie wydzielania płynów; analogi somatostatyny, modulujące poziomy cyklicznego monofosforanu adenozyny (cAMP) w celu hamowania cystogenezy; inhibitory kinazy mTOR, które hamują proliferację komórek i ekspansję cyst; oraz inhibitory SGLT2 wykazujące działanie nefroprotekcyjne. Te leki wykazują potencjał spowalniania postępu choroby, łagodzenia objawów i poprawy długoterminowych wyników leczenia nerek u pacjentów z ADPKD, dając nadzieję na skuteczniejsze strategie leczenia.
Bibliografia
A. B. Chapman et al., “Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort1,” Kidney Int, vol. 64, no. 3, pp. 1035–1045, Sep. 2003, doi: 10.1046/j.1523-1755.2003.00185.x.
C. Bergmann, L. M. Guay-Woodford, P. C. Harris, S. Horie, D. J. M. Peters, and V. E. Torres, “Polycystic kidney disease,” Nat Rev Dis Primers, vol. 4, no. 1, p. 50, Dec. 2018, doi: 10.1038/s41572-018-0047-y.
E. M. Spithoven et al., “Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival--an analysis of data from the ERA-EDTA Registry,” Nephrology Dialysis Transplantation, vol. 29, no. suppl 4, pp. iv15–iv25, Sep. 2014, doi: 10.1093/ndt/gfu017.
A. R. Chang et al., “Exome Sequencing of a Clinical Population for Autosomal Dominant Polycystic Kidney Disease,” JAMA, vol. 328, no. 24, p. 2412, Dec. 2022, doi: 10.1001/jama.2022.22847.
S. Terryn, A. Ho, R. Beauwens, and O. Devuyst, “Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1812, no. 10, pp. 1314–1321, Oct. 2011, doi: 10.1016/j.bbadis.2011.01.011.
H. P. H. Neumann et al., “Epidemiology of autosomal-dominant polycystic kidney disease: an in-depth clinical study for south-western Germany,” Nephrology Dialysis Transplantation, vol. 28, no. 6, pp. 1472–1487, Jun. 2013, doi: 10.1093/ndt/gfs551.
E. Cornec-Le Gall, A. Alam, and R. D. Perrone, “Autosomal dominant polycystic kidney disease,” The Lancet, vol. 393, no. 10174, pp. 919–935, Mar. 2019, doi: 10.1016/S0140-6736(18)32782-X.
Q. Su et al., “Structure of the human PKD1-PKD2 complex,” Science (1979), vol. 361, no. 6406, Sep. 2018, doi: 10.1126/science.aat9819.
K. HANAOKA and W. B. GUGGINO, “cAMP Regulates Cell Proliferation and Cyst Formation in Autosomal Polycystic Kidney Disease Cells,” Journal of the American Society of Nephrology, vol. 11, no. 7, pp. 1179–1187, Jul. 2000, doi: 10.1681/ASN.V1171179.
R. A. Saxton and D. M. Sabatini, “mTOR Signaling in Growth, Metabolism, and Disease,” Cell, vol. 168, no. 6, pp. 960–976, Mar. 2017, doi: 10.1016/j.cell.2017.02.004.
Y. Li, N. G. Santoso, S. Yu, O. M. Woodward, F. Qian, and W. B. Guggino, “Polycystin-1 Interacts with Inositol 1,4,5-Trisphosphate Receptor to Modulate Intracellular Ca2+ Signaling with Implications for Polycystic Kidney Disease,” Journal of Biological Chemistry, vol. 284, no. 52, pp. 36431–36441, Dec. 2009, doi: 10.1074/jbc.M109.068916.
A. K. Bhunia et al., “PKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2,” Cell, vol. 109, no. 2, pp. 157–168, Apr. 2002, doi: 10.1016/S0092-8674(02)00716-X.
S. Puri et al., “Polycystin-1 Activates the Calcineurin/NFAT (Nuclear Factor of Activated T-cells) Signaling Pathway,” Journal of Biological Chemistry, vol. 279, no. 53, pp. 55455–55464, Dec. 2004, doi: 10.1074/jbc.M402905200.
M. A. Lancaster and J. G. Gleeson, “Cystic kidney disease: the role of Wnt signaling,” Trends Mol Med, vol. 16, no. 8, pp. 349–360, Aug. 2010, doi: 10.1016/j.molmed.2010.05.004.
E. Nigro, M. Castelli, and A. Boletta, “Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis,” Cells, vol. 4, no. 4, pp. 687–705, Oct. 2015, doi: 10.3390/cells4040687.
C. S. Bonnet, M. Aldred, C. von Ruhland, R. Harris, R. Sandford, and J. P. Cheadle, “Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis,” Hum Mol Genet, vol. 18, no. 12, pp. 2166–2176, Jun. 2009, doi: 10.1093/hmg/ddp149.
J. Reiterová and V. Tesař, “Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment,” Int J Mol Sci, vol. 23, no. 6, p. 3317, Mar. 2022, doi: 10.3390/ijms23063317.
V. E. Torres et al., “Tolvaptan in Patients with Autosomal Dominant Polycystic Kidney Disease,” New England Journal of Medicine, vol. 367, no. 25, pp. 2407–2418, Dec. 2012, doi: 10.1056/NEJMoa1205511.
V. E. Torres et al., “Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease,” New England Journal of Medicine, vol. 377, no. 20, pp. 1930–1942, Nov. 2017, doi: 10.1056/NEJMoa1710030.
R.-U. Müller et al., “An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International,” Nephrology Dialysis Transplantation, vol. 37, no. 5, pp. 825–839, Apr. 2022, doi: 10.1093/ndt/gfab312.
M. C. Hogan et al., “Randomized Clinical Trial of Long-Acting Somatostatin for Autosomal Dominant Polycystic Kidney and Liver Disease,” Journal of the American Society of Nephrology, vol. 21, no. 6, pp. 1052–1061, Jun. 2010, doi: 10.1681/ASN.2009121291.
P. Ruggenenti et al., “Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease,” Kidney Int, vol. 68, no. 1, pp. 206–216, Jul. 2005, doi: 10.1111/j.1523-1755.2005.00395.x.
A. Caroli et al., “Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial,” The Lancet, vol. 382, no. 9903, pp. 1485–1495, Nov. 2013, doi: 10.1016/S0140-6736(13)61407-5.
E. Meijer et al., “Rationale and Design of the DIPAK 1 Study: A Randomized Controlled Clinical Trial Assessing the Efficacy of Lanreotide to Halt Disease Progression in Autosomal Dominant Polycystic Kidney Disease,” American Journal of Kidney Diseases, vol. 63, no. 3, pp. 446–455, Mar. 2014, doi: 10.1053/j.ajkd.2013.10.011.
A. L. Messchendorp, N. F. Casteleijn, E. Meijer, and R. T. Gansevoort, “Somatostatin in renal physiology and autosomal dominant polycystic kidney disease,” Nephrology Dialysis Transplantation, vol. 35, no. 8, pp. 1306–1316, Aug. 2020, doi: 10.1093/ndt/gfz054.
J. J. Neumiller, J. R. White, and R. K. Campbell, “Sodium-Glucose Co-Transport Inhibitors,” Drugs, vol. 70, no. 4, pp. 377–385, Mar. 2010, doi: 10.2165/11318680-000000000-00000.
T. Sen and H. J. L. Heerspink, “A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors,” Cell Metab, vol. 33, no. 4, pp. 732–739, Apr. 2021, doi: 10.1016/j.cmet.2021.02.016.
S. Kapoor et al., “Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats,” PLoS One, vol. 10, no. 4, p. e0125603, Apr. 2015, doi: 10.1371/journal.pone.0125603.
J. H. Brown et al., “Missense Mutation in Sterile α Motif of Novel Protein SamCystin is Associated with Polycystic Kidney Disease in (cy/+) Rat,” Journal of the American Society of Nephrology, vol. 16, no. 12, pp. 3517–3526, Dec. 2005, doi: 10.1681/ASN.2005060601.
B. Afsar et al., “Sodium–glucose cotransporter inhibition in polycystic kidney disease: fact or fiction,” Clin Kidney J, vol. 15, no. 7, pp. 1275–1283, Jun. 2022, doi: 10.1093/ckj/sfac029.
W. N. Leonhard et al., “Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease,” EBioMedicine, vol. 47, pp. 436–445, Sep. 2019, doi: 10.1016/j.ebiom.2019.08.041.
“ClinicalTrials.gov ID NCT03594110.”
“ClinicalTrials.gov ID NCT03036150.”
“ClinicalTrials.gov ID NCT05510115.”
V. E. Torres et al., “Prospects for mTOR Inhibitor Use in Patients with Polycystic Kidney Disease and Hamartomatous Diseases,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 7, pp. 1312–1329, Jul. 2010, doi: 10.2215/CJN.01360210.
“ClinicalTrials.gov ID NCT00346918.”
G. Walz et al., “Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease,” New England Journal of Medicine, vol. 363, no. 9, pp. 830–840, Aug. 2010, doi: 10.1056/NEJMoa1003491.
“ClinicalTrials.gov ID NCT00414440.”
J. Klawitter, B. Nashan, and U. Christians, “Everolimus and sirolimus in transplantation-related but different,” Expert Opin Drug Saf, vol. 14, no. 7, pp. 1055–1070, Jul. 2015, doi: 10.1517/14740338.2015.1040388.
A. Cox, M. Tung, H. Li, K. R. Hallows, and E. J. Chung, “In vitro delivery of mTOR inhibitors by kidney-targeted micelles for autosomal dominant polycystic kidney disease,” SLAS Technol, vol. 28, no. 4, pp. 223–229, Aug. 2023, doi: 10.1016/j.slast.2023.02.001.
G. D. ’Radin, N. S. ’Gattone V. H. ’Shayman, J. A. ’Deshmukh, “Abnormalities of glycosphingolipid, sulfatide, and ceramide in the polycystic (cpk/cpk) mouse”.
T. A. Natoli et al., “Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models,” Nat Med, vol. 16, no. 7, pp. 788–792, Jul. 2010, doi: 10.1038/nm.2171.
M. J. Peterschmitt, N. P. S. Crawford, S. J. M. Gaemers, A. J. Ji, J. Sharma, and T. T. Pham, “Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Oral Venglustat in Healthy Volunteers,” Clin Pharmacol Drug Dev, vol. 10, no. 1, pp. 86–98, Jan. 2021, doi: 10.1002/cpdd.865.
R. T. Gansevoort et al., “Venglustat, a Novel Glucosylceramide Synthase Inhibitor, in Patients at Risk of Rapidly Progressing ADPKD: Primary Results of a Double-Blind, Placebo-Controlled, Phase 2/3 Randomized Clinical Trial,” American Journal of Kidney Diseases, vol. 81, no. 5, pp. 517-527.e1, May 2023, doi: 10.1053/j.ajkd.2022.10.016.
V. Takiar et al., “Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis,” Proceedings of the National Academy of Sciences, vol. 108, no. 6, pp. 2462–2467, Feb. 2011, doi: 10.1073/pnas.1011498108.
“ClinicalTrials.gov ID NCT02903511.”
“ClinicalTrials.gov ID NCT02656017.”
“ClinicalTrials.gov ID NCT04939935.”
B. L. Blazer-Yost et al., “Pioglitazone Attenuates Cystic Burden in the PCK Rodent Model of Polycystic Kidney Disease,” PPAR Res, vol. 2010, pp. 1–8, 2010, doi: 10.1155/2010/274376.
“ClinicalTrials.gov ID NCT02697617.”
W. E. Sweeney, R. O. von Vigier, P. Frost, and E. D. Avner, “Src Inhibition Ameliorates Polycystic Kidney Disease,” Journal of the American Society of Nephrology, vol. 19, no. 7, pp. 1331–1341, Jul. 2008, doi: 10.1681/ASN.2007060665.
“ClinicalTrials.gov ID NCT01559363.”
“ClinicalTrials.gov ID NCT03203642.”
Opublikowane
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.