Terapia CAR-T – ewolucja, budowa oraz inżynieria komórek

Autorzy

Lidia Ziętek
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Katowicach, Śląski, Uniwersytet Medyczny w Katowicach
Michał Janik
Studenckie Koło Naukowe przy Katedrze i Zakładzie Biofizyki im. prof. Zbigniewa Religi, Wydział Nauk Medycznych w Katowicach, Śląski, Uniwersytet Medyczny w Katowicach
Robert Kasza

Słowa kluczowe:

terapia CAR-T, inżynieria komórek, onkologia

Streszczenie

Leczenie pacjentów onkologicznych od lat stanowi jedno z wielu wyzwań w medycynie. Wynika to z faktu, iż komórki nowotworowe posiadają zdolność do niekontrolowanego namnażania, a także zdolność do unikania procesu apoptozy. Dotychczasowe metody leczenia, jak chemioterapia czy leczenie chirurgiczne nie zawsze okazywały się skuteczne w swoim zastosowaniu, co stworzyło potrzebę zastosowania innych form terapii. Dalsze badania nad leczeniem onkologicznym zaowocowały rozwojem terapii komórkowej i stworzeniem terapii CAR-T. Celem poniższego rozdziału jest przedstawienie historii rozwoju terapii CAR-T, ewolucji i budowy poszczególnych generacji komórek specjalnie zsyntezowanych do tej formy leczenia, a także metody ich otrzymywania i inżynierii.

Bibliografia

Miao, L., et al., A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021. Front Immunol, 2022. 13: p. 840956.

Rothstein, T.L., et al., Cytotoxic T lymphocyte sequential killing of immobilized allogeneic tumor target cells measured by time-lapse microcinematography. J Immunol, 1978. 121(5): p. 1652-6.

Martz, E., Multiple target cell killing by the cytolytic T lymphocyte and the mechanism of cytotoxicity. Transplantation, 1976. 21(1): p. 5-11.

Topalian, S.L., et al., Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods, 1987. 102(1): p. 127-41.

Gross, G., T. Waks, and Z. Eshhar, Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A, 1989. 86(24): p. 10024-8.

Eshhar, Z., et al., Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A, 1993. 90(2): p. 720-4.

Bao, C., et al., The Application of Nanobody in CAR-T Therapy. Biomolecules, 2021. 11(2).

Ewa Wrona, P.P., Nowoczesna immunoterapia nowotworów — historia terapii komórkami CAR-T. 2019.

Han, D., et al., Current Progress in CAR-T Cell Therapy for Hematological Malignancies. J Cancer, 2021. 12(2): p. 326-334.

Amelia Kierasińska, D.C., Marta Węgierska, Ewelina Stoczyńska-Fidelus, Piotr Rieske, Terapia CAR-T w onkologii i w innych dziedzinach medycyny. 2021.

June, C.H., et al., CAR T cell immunotherapy for human cancer. Science, 2018. 359(6382): p. 1361-1365.

Kochenderfer, J.N., et al., Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 2010. 116(20): p. 4099-102.

Sommermeyer, D., et al., Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia, 2017. 31(10): p. 2191-2199.

Stephen J. Schuster, M.R.B., Constantine S. Tam et al., Primary Analysis of Juliet: A Global, Pivotal, Phase 2 Trial of CTL019 in Adult Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. 2017.

Schuster, S.J., et al., Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med, 2019. 380(1): p. 45-56.

Yan, W., et al., Application of Chimeric Antigen Receptor T Cells in the Treatment of Hematological Malignancies. Biomed Res Int, 2020. 2020: p. 4241864.

Jogalekar, M.P., et al., CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol, 2022. 13: p. 925985.

Ma, S., et al., Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci, 2019. 15(12): p. 2548-2560.

Qin, X., et al., Recent advances in CAR-T cells therapy for colorectal cancer. Front Immunol, 2022. 13: p. 904137.

Styczyński J., A brief history of CAR-T cells: from laboratory to the bedside, Acta Haematologica Polonica, 51(1), March 2020, 2–5, doi: 10.2478/ahp-2020-0002

Sadelain, M., I. Riviere, and R. Brentjens, Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer, 2003. 3(1): p. 35-45.

Almasbak, H., et al., Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther, 2015. 22(5): p. 391-403.

Hudecek, M., et al., The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res, 2015. 3(2): p. 125-35.

Jonnalagadda, M., et al., Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol Ther, 2015. 23(4): p. 757-68.

Zhang, C., et al., Engineering CAR-T cells. Biomark Res, 2017. 5: p. 22.

Lorentzen, C.L. and P.T. Straten, CD19-Chimeric Antigen Receptor T Cells for Treatment of Chronic Lymphocytic Leukaemia and Acute Lymphoblastic Leukaemia. Scand J Immunol, 2015. 82(4): p. 307-19.

Katarzyna Karwicka, J.W., Olga Czabak, Janusz Kocki, Marek Hus, Innowacyjna terapia CAR-T w leczeniu nowotworów hematologicznych — wybrane aspekty genetyczne i immunologiczne. 2020.

Ramello, M.C., et al., An immunoproteomic approach to characterize the CAR interactome and signalosome. Sci Signal, 2019. 12(568).

Jiang, J.L.a.G., The journey of CAR-T therapy in hematological malignancies. 2022.

Muyldermans, S., Nanobodies: natural single-domain antibodies. Annu Rev Biochem, 2013. 82: p. 775-97.

Brudno, J.N., et al., Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med, 2020. 26(2): p. 270-280.

Bridgeman, J.S., et al., The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol, 2010. 184(12): p. 6938-49.

Pule, M.A., et al., A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther, 2005. 12(5): p. 933-41.

Song, D.G., et al., CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood, 2012. 119(3): p. 696-706.

Guedan, S., et al., ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood, 2014. 124(7): p. 1070-80.

Neelapu, S.S., et al., Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med, 2017. 377(26): p. 2531-2544.

Maude, S.L., et al., Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med, 2018. 378(5): p. 439-448.

Feucht, J., et al., Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med, 2019. 25(1): p. 82-88.

Heuser, C., et al., T-cell activation by recombinant immunoreceptors: impact of the intracellular signalling domain on the stability of receptor expression and antigen-specific activation of grafted T cells. Gene Ther, 2003. 10(17): p. 1408-19.

Brocker, T., Chimeric Fv-zeta or Fv-epsilon receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood, 2000. 96(5): p. 1999-2001.

40. Bretscher, P.A., A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci U S A, 1999. 96(1): p. 185-90.

Acuto, O. and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol, 2003. 3(12): p. 939-51.

Finney, H.M., A.N. Akbar, and A.D. Lawson, Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol, 2004. 172(1): p. 104-13.

Croft, M., The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol, 2009. 9(4): p. 271-85.

Frigault, M.J., et al., Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol Res, 2015. 3(4): p. 356-67.

Marin, V., et al., Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica, 2010. 95(12): p. 2144-52.

Chmielewski, M., et al., IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res, 2011. 71(17): p. 5697-706.

Zhang, L., et al., Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther, 2011. 19(4): p. 751-9.

Chmielewski, M. and H. Abken, TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther, 2015. 15(8): p. 1145-54.

Kagoya, Y., et al., A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med, 2018. 24(3): p. 352-359.

Lee, G. and G.M. Arepally, Anticoagulation techniques in apheresis: from heparin to citrate and beyond. J Clin Apher, 2012. 27(3): p. 117-25.

Maus, M.V. and B.L. Levine, Chimeric Antigen Receptor T-Cell Therapy for the Community Oncologist. Oncologist, 2016. 21(5): p. 608-17.

Kagoya, Y., et al., Genetic Ablation of HLA Class I, Class II, and the T-cell Receptor Enables Allogeneic T Cells to Be Used for Adoptive T-cell Therapy. Cancer Immunol Res, 2020. 8(7): p. 926-936.

Sadelain, M., CD19 CAR T Cells. Cell, 2017. 171(7): p. 1471.

Hu, W.S. and V.K. Pathak, Design of retroviral vectors and helper cells for gene therapy. Pharmacol Rev, 2000. 52(4): p. 493-511.

Tanaka, J., M. Mielcarek, and B. Torok-Storb, Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood, 1998. 91(1): p. 347-52.

Shank, B.R., et al., Chimeric Antigen Receptor T Cells in Hematologic Malignancies. Pharmacotherapy, 2017. 37(3): p. 334-345.

Neelapu, S.S., CAR-T efficacy: is conditioning the key? Blood, 2019. 133(17): p. 1799-1800.

Zhao, Z., et al., The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B, 2018. 8(4): p. 539-551.

Opublikowane

18 czerwca 2023