Innowacje w powłokach implantów medycznych kluczem do prawej oteointegracji

Autorzy

Rafał Kołodziej
1. Studenckie Koło Naukowe Patomorfologii przy Katedrze Nauk Morfologicznych Uniwersytetu Rzeszowskiego, Kolegium Nauk Medycznych Uniwersytetu Rzeszowskiego
Patrycja Piłat
2. Studenckie Koło Naukowe przy Katedrze i Klinice Neurochirurgii w Katowicach, Wydział Nauk Medycznych w Katowicach, Śląski, Uniwersytet Medyczny w Katowicach
Małgorzata Dyga
2. Studenckie Koło Naukowe przy Katedrze i Klinice Neurochirurgii w Katowicach, Wydział Nauk Medycznych w Katowicach, Śląski, Uniwersytet Medyczny w Katowicach
Zuzanna Kasieczka
2. Studenckie Koło Naukowe przy Katedrze i Klinice Neurochirurgii w Katowicach, Wydział Nauk Medycznych w Katowicach, Śląski, Uniwersytet Medyczny w Katowicach,

Słowa kluczowe:

implant, powłoka, ortopedia, osteointegracja

Streszczenie

Wraz ze starzeniem się społeczeństwa rośnie liczba wykonywanych zabiegów alloplastyki. Część pacjentów będzie wymagała rewizji endoplastyki z powodu komplikacji, jak zakażenia czy obluzowania. Rozwiązaniem może być zastosowanie nowoczesnych technologii w tworzeniu funkcyjnych powłok na powierzchni implantu. Powłoka implantu pełni kilka funkcji. Z jednej strony zwiększa wytrzymałość implantu oraz zapewnia jego bezawaryjność, z drugiej umożliwia prawidłowy przebieg procesu osteointegracji. Najnowsze badania nad powłokami stawiają nacisk na właściwości antyseptyczne powłoki oraz zapewnienie dobrej powierzchni przylegania do kości co zapewnia przyspieszenie procesu osteointegracji. Efekty te są możliwe dzięki zastosowaniu: nanopowłok, jonów metali zaimplementowanych w powłoki, czynników biologicznych i immunologicznych modulujących działanie komórek organizmu oraz materiałów biologicznie czynnych. Uwagę badaczy skupiają również powłoki kombinowane, prezentujące wieloczynnikowe, inteligentne działanie zdolne do uwalniania czynników przy odpowiednich warunkach po wszczepieniu w ciało. W pracy skupiono się na przedstawieniu najważniejszych metod ich sporządzania, procesu integracji implantu z kością tj. osteointegracji, oraz przedstawienia najnowszych zdobyczy inżynierii biomateriałowej w tej dziedzinie.

 

Bibliografia

Ministerstwo Zdrowia. Endoprotezoplastyki w Polsce w 2019 r. . 2019.

Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, et al. Future clinical and economic impact of revision total hip and knee arthroplasty. In: Journal of Bone and Joint Surgery - Series A. 2007. p. 144–51.

Delanois RE, Mistry JB, Gwam CU, Mohamed NS, Choksi US, Mont MA. Current Epidemiology of Revision Total Knee Arthroplasty in the United States. Journal of Arthroplasty. 2017 Sep 1;32[9]:2663–8.

Puleo DA, Nanci A. Understanding and controlling the bone}implant interface. Vol. 20, Biomaterials. 1999.

Kim T il. A tribute to Dr. Per-Ingvar brånemark. Vol. 44, Journal of Periodontal and Implant Science. Korean Academy of Periodontology; 2014. p. 265.

Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Vol. 84, Acta Biomaterialia. Acta Materialia Inc; 2019. p. 1–15.

Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European Spine Journal. 2001;10:S96–101.

Palmquist A. A multiscale analytical approach to evaluate osseointegration. Vol. 29, Journal of Materials Science: Materials in Medicine. Springer New York LLC; 2018.

Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Vol. 125, European Journal of Oral Sciences. Blackwell Munksgaard; 2017. p. 315–37.

Xu J, Zhang J, Shi Y, Tang J, Huang D, Yan M, et al. Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances. Vol. 15, Materials. MDPI; 2022.

Sidambe AT. Biocompatibility of advanced manufactured titanium implants-A review. Vol. 7, Materials. MDPI AG; 2014. p. 8168–88.

roughness [1].

Kalantari K, Saleh B, Webster TJ. Biological applications of severely plastically deformed nano‐grained medical devices: A review. Vol. 11, Nanomaterials. MDPI AG; 2021. p. 1–24.

Geyao L, Yang D, Wanglin C, Chengyong W. Development and application of physical vapor deposited coatings for medical devices: A review. In: Procedia CIRP. Elsevier B.V.; 2020. p. 250–62.

He X, Zhang X, Wang X, Qin L. Review of Antibacterial Activity of Titanium-Based Implants’ Surfaces Fabricated by Micro-Arc Oxidation. Coatings. 2017 Mar 22;7[3]:45.

Yu S, Guo D, Han J, Sun L, Zhu H, Yu Z, et al. Enhancing Antibacterial Performance and Biocompatibility of Pure Titanium by a Two-Step Electrochemical Surface Coating. ACS Applied Materials and Interfaces. 2020 Oct 7;12[40]:44433–46.

Bai Y, Zhou R, Cao J, Wei D, Du Q, Li B, et al. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. Materials Science and Engineering C. 2017 Jul 1;76:908–17.

Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D Printing Technologies in Metallic Implants: A Thematic Review on the Techniques and Procedures. International Journal of Bioprinting. 2021;7[1]:21–46.

Lim HK, Ryu M, Woo SH, Song IS, Choi YJ, Lee UL. Bone conduction capacity of highly porous 3D-printed titanium scaffolds based on different pore designs. Materials. 2021 Jul 2;14[14].

Yoon HG, Ko Y, Kim YS, Bak KH, Chun HJ, Na MK, et al. Efficacy of 3D-printed titanium mesh-type patient-specific implant for cranioplasty. Korean Journal of Neurotrauma. 2021;17.

Auciello O, Renou S, Kang K, Tasat D, Olmedo D. A Biocompatible Ultrananocrystalline Diamond [UNCD] Coating for a New Generation of Dental Implants. Nanomaterials. 2022 Feb 25;12[5]:782.

Marotta Reis de Vasconcellos Daniel Oliveira Leite Fernanda Nascimento de Oliveira Yasmin Rodarte Carvalho Carlos Alberto Alves Cairo L. Implantology Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits. Vol. 24, Implantology Braz Oral Res. 2010.

Kalantari K, Saleh B, Webster TJ. Biological applications of severely plastically deformed nano‐grained medical devices: A review. Vol. 11, Nanomaterials. MDPI AG; 2021. p. 1–24.

Cui Y, Li H, Li Y, Mao L. Novel insights into nanomaterials for immunomodulatory bone regeneration. Vol. 4, Nanoscale Advances. Royal Society of Chemistry; 2022. p. 334–52.

Wang X, Yu Y, Ji L, Geng Z, Wang J, Liu C. Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioactive Materials. 2021 Dec 1;6[12]:4517–30.

Jian SY, Aktug SL, Huang HT, Ho CJ, Lin SY, Chen CH, et al. The potential of calcium/phosphate containing mao implanted in bone tissue regeneration and biological characteristics. International Journal of Molecular Sciences. 2021 May 1;22[9].

Zhang G, Zhao P, Lin L, Qin L, Huan Z, Leeflang S, et al. Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study. Annals of Translational Medicine. 2021 Jan;9[1]:39–39.

Rajula MPB, Narayanan V, Venkatasubbu GD, Mani RC, Sujana A. Nano-hydroxyapatite: A Driving Force for Bone Tissue Engineering. J Pharm Bioallied Sci [Internet]. 2021/06/05. 2021 Jun;13[Suppl 1]:S11–4. Available from: https://pubmed.ncbi.nlm.nih.gov/34447034

Shin YC, Bae JH, Lee JH, Raja IS, Kang MS, Kim B, et al. Enhanced osseointegration of dental implants with reduced graphene oxide coating. Biomaterials Research. 2022 Dec 1;26[1].

Yao Q, Jiang Y, Tan S, Fu X, Li B, Liu L. Composition and bioactivity of calcium phosphate coatings on anodic oxide nanotubes formed on pure Ti and Ti-6Al-4V alloy substrates. Materials Science and Engineering C. 2020 May 1;110.

Chen H te, Lin HI, Chung CJ, Tang CH, He JL. Osseointegrating and phase-oriented micro-arc-oxidized titanium dioxide bone implants. Journal of Applied Biomaterials and Functional Materials. 2021;19.

Li C, Yang Y, Yang L, Shi Z, Yang P, Cheng G. In vitro bioactivity and biocompatibility of bio-inspired Ti-6Al-4V alloy surfaces modified by combined laser micro/nano structuring. Molecules. 2020;25[7].

Yizhou Z, Hang L, Xiangmei L, Jun W, Cao Y, Man WT, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Science Advances [Internet]. 2022 Apr 13;7[14]:eabf6654. Available from: https://doi.org/10.1126/sciadv.abf6654

Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Vol. 9, Advanced Healthcare Materials. Wiley-VCH Verlag; 2020.

Yan R, Li J, Wu Q, Zhang X, Hu L, Deng Y, et al. Trace Element-Augmented Titanium Implant With Targeted Angiogenesis and Enhanced Osseointegration in Osteoporotic Rats. Frontiers in Chemistry. 2022 Feb 17;10.

Zhao H, Liu F, Yin Y, Wang S. Potassium Titanate Assembled Titanium Dioxide Nanotube Arrays Endow Titanium Implants Excellent Osseointegration Performance and Nerve Formation Potential. Frontiers in Chemistry. 2022 Jan 25;10.

Yin X, Yang C, Wang Z, Zhang Y, Li Y, Weng J, et al. Alginate/chitosan modified immunomodulatory titanium implants for promoting osteogenesis in vitro and in vivo. Materials Science and Engineering C. 2021 May 1;124.

Yu D, Guo S, Yu M, Liu W, Li X, Chen D, et al. Immunomodulation and osseointegration activities of Na2TiO3 nanorods-arrayed coatings doped with different Sr content. Bioactive Materials. 2022 Apr 1;10:323–34.

Fu, Liu, Halim, Ju, Luo, Song. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019 Jul 28;8[8]:784.

Zhao H, Shen S, Zhao L, Xu Y, Li Y, Zhuo N. 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis. BMC Musculoskeletal Disorders. 2021 Dec 1;22[1].

Teng F-Y, Chen W-C, Wang Y-L, Hung C-C, Tseng C-C. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo. Bioinorg Chem Appl [Internet]. 2016/02/08. 2016;2016:3837679. Available from: https://pubmed.ncbi.nlm.nih.gov/26977141

Nemcakova I, Litvinec A, Mandys V, Potocky S, Plencner M, Doubkova M, et al. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep [Internet]. 2022 Mar 28;12[1]:5264. Available from: https://pubmed.ncbi.nlm.nih.gov/35347219

Katie Kaestner. Microbial biofilm inhibits wound healing. MicrobeWiki. 2016.

Park C, Seong Y-J, Kang I-G, Song E-H, Lee H, Kim J, et al. Enhanced Osseointegration Ability of Poly[lactic acid] via Tantalum Sputtering-Based Plasma Immersion Ion Implantation. ACS Applied Materials & Interfaces [Internet]. 2019 Mar 20;11[11]:10492–504. Available from: https://doi.org/10.1021/acsami.8b21363

Zhang T, Wang L, Chen Q, Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med J [Internet]. 2014 Mar;55[2]:283–91. Available from: https://pubmed.ncbi.nlm.nih.gov/24532494

Guo C, Cui W, Wang X, Lu X, Zhang L, Li X, et al. Poly-l-lysine/Sodium Alginate Coating Loading Nanosilver for Improving the Antibacterial Effect and Inducing Mineralization of Dental Implants. ACS Omega [Internet]. 2020 May 4;5[18]:10562–71. Available from: https://pubmed.ncbi.nlm.nih.gov/32426614

Oleshko O, Liubchak I, Husak Y, Korniienko V, Yusupova A, Oleshko T, et al. In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium. Materials [Basel] [Internet]. 2020 Sep 30;13[19]:4359. Available from: https://pubmed.ncbi.nlm.nih.gov/33008012

Wang X, Xu K, Cui W, Yang X, Maitz MF, Li W, et al. Controlled synthesis of mussel-inspired Ag nanoparticle coatings with demonstrated in vitro and in vivo antibacterial properties. Materials & Design [Internet]. 2021;208:109944. Available from: https://www.sciencedirect.com/science/article/pii/S0264127521004986

Maleki-Ghaleh H, Siadati MH, Fallah A, Koc B, Kavanlouei M, Khademi-Azandehi P, et al. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering. Int J Mol Sci [Internet]. 2021 Sep 3;22[17]:9564. Available from: https://pubmed.ncbi.nlm.nih.gov/34502473

Duan J, Yang Y, Zhang E, Wang H. Co-Cr-Mo-Cu alloys for clinical implants with osteogenic effect by increasing bone induction, formation and development in a rabbit model. Burns & Trauma [Internet]. 2020 Jan 1;8:tkaa036. Available from: https://doi.org/10.1093/burnst/tkaa036

Wang S, Yang Y, Li W, Wu Z, Li J, Xu K, et al. Study of the Relationship Between Chlorhexidine-Grafted Amount and Biological Performances of Micro/Nanoporous Titanium Surfaces. ACS Omega [Internet]. 2019 Nov 5;4[19]:18370–80. Available from: https://doi.org/10.1021/acsomega.9b02614

Chae K, Jang WY, Park K, Lee J, Kim H, Lee K, et al. Antibacterial infection and immune-evasive coating for orthopedic implants. Sci Adv [Internet]. 2020 Oct 28;6[44]:eabb0025. Available from: https://pubmed.ncbi.nlm.nih.gov/33115733

Srimaneepong V, Skallevold HE, Khurshid Z, Zafar MS, Rokaya D, Sapkota J. Graphene for Antimicrobial and Coating Application. Int J Mol Sci [Internet]. 2022 Jan 2;23[1]:499. Available from: https://pubmed.ncbi.nlm.nih.gov/35008923

Guo C, Lu R, Wang X, Chen S. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. J Mater Sci Mater Med [Internet]. 2021 Oct 26;32[11]:135. Available from: https://pubmed.ncbi.nlm.nih.gov/34704134

Fu J, Zhu W, Liu X, Liang C, Zheng Y, Li Z, et al. Self-activating anti-infection implant. Nat Commun [Internet]. 2021 Nov 25;12[1]:6907. Available from: https://pubmed.ncbi.nlm.nih.gov/34824260

Costa B, Martínez-de-Tejada G, Gomes PAC, L Martins MC, Costa F. Antimicrobial Peptides in the Battle against Orthopedic Implant-Related Infections: A Review. Pharmaceutics [Internet]. 2021 Nov 12;13[11]:1918. Available from: https://pubmed.ncbi.nlm.nih.gov/34834333

niversity of Nebraska Medical Center. APD3 ANTIMICROBIAL PEPTIDE DATABASE. 2017.

Chen J, Shi X, Zhu Y, Chen Y, Gao M, Gao H, et al. On-demand storage and release of antimicrobial peptides using Pandora’s box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics [Internet]. 2020 Jan 1;10[1]:109–22. Available from: https://pubmed.ncbi.nlm.nih.gov/31903109

Nalawade TM, Bhat K, Sogi SHP. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms. J Int Soc Prev Community Dent [Internet]. 2015;5[2]:114–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25992336

Li B, Zhang L, Wang D, Peng F, Zhao X, Liang C, et al. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Materials Science and Engineering: C [Internet]. 2021;122:111878. Available from: https://www.sciencedirect.com/science/article/pii/S0928493121000163

Opublikowane

13 czerwca 2023