Innowacje w stymulacji bezelektrodowej serca
Słowa kluczowe:
stymulacja serca, elektroterapia, stymulator bezelektrodowyStreszczenie
Dynamiczny rozwój elektrokardiologii w ostatnich latach jest niezaprzeczalny, a lista urządzeń, które możemy wszczepiać pacjentom wymagającym elektroterapii stale wydłuża się. Wysokie bloki przedsionkowo-komorowe oraz dysfunkcja węzła zatokowo-przedsionkowego stanowią najczęstsze powody dla konieczności stałej stymulacji serca. Z drugiej strony przewlekła stymulacja prawokomorowa predysponuje do powstawania zmian degeneracyjnych w miokardium i w efekcie do tak zwanej kardiomiopatii stymulatorowej. Z tego powodu opracowuje się coraz to nowsze sposoby stymulacji serca, które w jak największym stopniu przypominałyby fizjologiczne drogi przewodzenia. Momentem przełomowym było wynalezienie bezelektrodowych stymulatorów serca, które w dużym stopniu wyeliminowały wady klasycznych stymulatorów takie jak infekcje, uszkodzenia zastawki trójdzielnej, dyslokację czy złamania elektrod. Dzięki temu pacjenci, którzy z powodu infekcyjnego zapalenia wsierdzia musieli mieć eksplantowany klasyczny stymulator, osiągną korzyści z zastosowania systemu bezelektrodowego. Udoskonalanie metod bezelektrodowej stymulacji stanowi przyszłość elektroterapii. Wprowadzenie możliwości synchronizacji przedsionkowo-komorowej w stymulatorach bezelektrodowych, zapewnia skuteczniejszy sposób stymulacji, przekładając się na poprawę funkcjonowania pacjentów. Głosem przyszłości pozostają również stymulatory biologiczne, dzięki którym możnaby wyeliminować konieczność wszczepiania pacjentom jakichkolwiek sztucznych urządzeń.
Bibliografia
Hoffa M, Ludwig C. Einige neue versuche uber herzbewegung. Z Ration Med. 1850;9:107–44.
Mond HG, Sloman JG, Edwards RH. The First Pacemaker. Pacing Clin Electrophysiol. 1982;52:278–82. https://doi.org/10.1111/j.1540-8159.1982.tb02226.x.
DeForge WF. Cardiac pacemakers: a basic review of the history and current technology. J Vet Cardiol. 2019 April 1;22:40–50. https://doi.org/10.1016/j.jvc.2019.01.001.
Boink GJJ, Christoffels VM, Robinson RB, Tan HL. The past, present, and future of pacemaker therapies. Trends Cardiovasc Med. 2015 November 1;258:661–73. https://doi.org/10.1016/j.tcm.2015.02.005.
Mond HG, Wickham GG, Sloman JG. The Australian History of Cardiac Pacing: Memories from a Bygone Era. Heart Lung Circ. 2012 June 1;216:311–9. https://doi.org/10.1016/j.hlc.2011.09.004.
Lee JZ, Mulpuru SK, Shen WK. Leadless pacemaker: Performance and complications. Trends Cardiovasc Med. 2018 February 1;282:130–41. https://doi.org/10.1016/j.tcm.2017.08.001.
Doyen B, Matelot D, Carré F. Asymptomatic bradycardia amongst endurance athletes. Phys Sportsmed. 2019 July 3;473:249–52. PMID: 30640577. https://doi.org/10.1080/00913847.2019.1568769.
Carlson SK, Patel AR, Chang PM. Bradyarrhythmias in Congenital Heart Disease. Card Electrophysiol Clin. 2017 June;92:177–87. PMID: 28457234. https://doi.org/10.1016/j.ccep.2017.02.002.
Acharya D, Doppalapudi H, Tallaj JA. Arrhythmias in Fabry cardiomyopathy. Card Electrophysiol Clin. 2015 June;72:283–91. PMID: 26002392. https://doi.org/10.1016/j.ccep.2015.03.014.
Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2022 October 21;4340:3997–4126. https://doi.org/10.1093/eurheartj/ehac262.
Sathnur N, Ebin E, Benditt DG. Sinus Node Dysfunction. Card Electrophysiol Clin. 2021 December;134:641–59. PMID: 34689892. https://doi.org/10.1016/j.ccep.2021.06.006.
Sidhu S, Marine JE. Evaluating and managing bradycardia. Trends Cardiovasc Med. 2020 July 1;305:265–72. https://doi.org/10.1016/j.tcm.2019.07.001.
Hasan F, Bogossian H, Lemke B. Akute Bradykardien. Herzschrittmachertherapie Elektrophysiologie. 2020 March 1;311:3–9. https://doi.org/10.1007/s00399-020-00665-z.
Goldberger JJ, Johnson NP, Gidea C. Significance of asymptomatic bradycardia for subsequent pacemaker implantation and mortality in patients >60 years of age. Am J Cardiol. 2011 September 15;1086:857–61. PMID: 21757182. https://doi.org/10.1016/j.amjcard.2011.04.035.
Bernstein AD, Camm AJ, Fletcher RD, et al. The NASPE*/BPEG** Generic Pacemaker Code for Antibradyarrhythmia and Adaptive-Rate Pacing and Antitachyarrhythmia Devices. Pacing Clin Electrophysiol. 1987;104:794–9. https://doi.org/10.1111/j.1540-8159.1987.tb06035.x.
Kozłowski D. Podstawowe wiadomości o stymulatorach serca. Geriatria. 2012;64:254–63.
Ouali S, Neffeti E, Ghoul K, et al. DDD versus VVIR pacing in patients, ages 70 and over, with complete heart block. Pacing Clin Electrophysiol PACE. 2010 May;335:583–9. PMID: 20015129. https://doi.org/10.1111/j.1540-8159.2009.02636.x.
Kılıçaslan B, Vatansever Ağca F, Kılıçaslan EE, et al. Comparison of DDD versus VVIR pacing modes in elderly patients with atrioventricular block. Turk Kardiyol Dernegi Arsivi Turk Kardiyol Derneginin Yayin Organidir. 2012 June;404:331–6. PMID: 22951849. https://doi.org/10.5543/tkda.2012.33677.
Kirkfeldt RE, Andersen HR, Nielsen JC, DANPACE Investigators. System upgrade and its complications in patients with a single lead atrial pacemaker: data from the DANPACE trial. Eur Eur Pacing Arrhythm Card Electrophysiol J Work Groups Card Pacing Arrhythm Card Cell Electrophysiol Eur Soc Cardiol. 2013 August;158:1166–73. PMID: 23449923. https://doi.org/10.1093/europace/eut039.
Dębski M, Ulman M, Ząbek A, et al. Lead-related complications after DDD pacemaker implantation. Kardiol Pol. 2018;768:1224–31. PMID: 29633234. https://doi.org/10.5603/KP.a2018.0089.
Lin G, Nishimura RA, Connolly HM, Dearani JA, Sundt TM, Hayes DL. Severe symptomatic tricuspid valve regurgitation due to permanent pacemaker or implantable cardioverter-defibrillator leads. J Am Coll Cardiol. 2005 May 17;4510:1672–5. PMID: 15893186. https://doi.org/10.1016/j.jacc.2005.02.037.
Kirkfeldt RE, Johansen JB, Nohr EA, Jørgensen OD, Nielsen JC. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J. 2014 May 7;3518:1186–94. https://doi.org/10.1093/eurheartj/eht511.
Spickler JW, Rasor NS, Kezdi P, Misra SN, Robins KE, LeBoeuf C. Totally self-contained intracardiac pacemaker. J Electrocardiol. 1970 January 1;33:325–31. https://doi.org/10.1016/S0022-0736(70)80059-0.
Bernard ML. Pacing Without Wires: Leadless Cardiac Pacing. Ochsner J. 2016;163:238–42. PMID: 27660571.
Bencardino Gi, Scacciavillani R, Narducci ML. Leadless pacemaker technology: clinical evidence of new paradigm of pacing. Rev Cardiovasc Med. 2022 January 25;232:43. https://doi.org/10.31083/j.rcm2302043.
Lloyd M, Reynolds D, Sheldon T, et al. Rate adaptive pacing in an intracardiac pacemaker. Heart Rhythm. 2017 February 1;142:200–5. https://doi.org/10.1016/j.hrthm.2016.11.016.
Han JJ. The Aveir Leadless Pacing System receives FDA approval. Artif Organs. 2022;467:1219–20. https://doi.org/10.1111/aor.14312.
Laczay B, Aguilera J, Cantillon DJ. Leadless cardiac ventricular pacing using helix fixation: Step-by-step guide to implantation. J Cardiovasc Electrophysiol. 2023;343:748–59. https://doi.org/10.1111/jce.15785.
Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: Developed by the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC) With the special contribution of the European Heart Rhythm Association (EHRA). Eur Heart J. 2021 September 14;4235:3427–520. https://doi.org/10.1093/eurheartj/ehab364.
Garweg C, Splett V, Sheldon TJ, et al. Behavior of leadless AV synchronous pacing during atrial arrhythmias and stability of the atrial signals over time—Results of the MARVEL Evolve subanalysis. Pacing Clin Electrophysiol. 2019;423:381–7. https://doi.org/10.1111/pace.13615.
Chinitz L, Ritter P, Khelae SK, et al. Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker: Results from the Micra atrioventricular feasibility studies. Heart Rhythm. 2018 September;159:1363–71. PMID: 29758405. https://doi.org/10.1016/j.hrthm.2018.05.004.
Steinwender C, Khelae SK, Garweg C, et al. Atrioventricular Synchronous Pacing Using a Leadless Ventricular Pacemaker: Results From the MARVEL 2 Study. JACC Clin Electrophysiol. 2020 January 1;61:94–106. https://doi.org/10.1016/j.jacep.2019.10.017.
Warwas S, Jędrzejczyk-Patej E, Jagosz M, et al. The implantation of AV leadless pacemaker - a case report. Pol Merkur Lek Organ Pol Tow Lek. 2022 October 21;50299:299–301. PMID: 36283012.
Kowalska W, Bichalski B, Kalarus Z, Średniawa B, Jędrzejczyk-Patej E. Leadless pacemaker implantation in a 102-year old patient – a case report. W Dobrym Rytmie. 2020 February 28;453:23–4. https://doi.org/10.5604/01.3001.0014.0500.
El‐Chami MF, Bhatia NK, Merchant FM. Atrio‐ventricular synchronous pacing with a single chamber leadless pacemaker: Programming and trouble shooting for common clinical scenarios. J Cardiovasc Electrophysiol. 2021 February;322:533–9. PMID: 33179814. https://doi.org/10.1111/jce.14807.
Tang JE, Savona SJ, Essandoh MK. Aveir Leadless Pacemaker: Novel Technology With New Anesthetic Implications. J Cardiothorac Vasc Anesth. 2022 December 1;3612:4501–4. https://doi.org/10.1053/j.jvca.2022.07.021.
Ibrahim R, Khoury A, El-Chami MF. Leadless Pacing: Where We Currently Stand and What the Future Holds. Curr Cardiol Rep. 2022 October 1;2410:1233–40. https://doi.org/10.1007/s11886-022-01752-y.
Bongiorni MG, Della Tommasina V, Barletta V, et al. Feasibility and long-term effectiveness of a non-apical Micra pacemaker implantation in a referral centre for lead extraction. EP Eur. 2019 January 1;211:114–20. https://doi.org/10.1093/europace/euy116.
Duray GZ, Ritter P, El-Chami M, et al. Long-term performance of a transcatheter pacing system: 12-Month results from the Micra Transcatheter Pacing Study. Heart Rhythm. 2017 May;145:702–9. PMID: 28192207. https://doi.org/10.1016/j.hrthm.2017.01.035.
El-Chami MF, Al-Samadi F, Clementy N, et al. Updated performance of the Micra transcatheter pacemaker in the real-world setting: A comparison to the investigational study and a transvenous historical control. Heart Rhythm. 2018 December 1;1512:1800–7. https://doi.org/10.1016/j.hrthm.2018.08.005.
El-Chami MF, Bockstedt L, Longacre C, et al. Leadless vs. transvenous single-chamber ventricular pacing in the Micra CED study: 2-year follow-up. Eur Heart J. 2022 March 21;4312:1207–15. https://doi.org/10.1093/eurheartj/ehab767.
Mattson AR, Zhingre Sanchez JD, Iaizzo PA. The fixation tines of the MicraTM leadless pacemaker are atraumatic to the tricuspid valve. Pacing Clin Electrophysiol PACE. 2018 December;4112:1606–10. PMID: 30341813. https://doi.org/10.1111/pace.13529.
Kiblboeck D, Reiter C, Kammler J, et al. Artefacts in 1.5 Tesla and 3 Tesla cardiovascular magnetic resonance imaging in patients with leadless cardiac pacemakers. J Cardiovasc Magn Reson. 2018 July 5;201:47. https://doi.org/10.1186/s12968-018-0469-4.
Edlinger C, Granitz M, Paar V, et al. Visualization and appearance of artifacts of leadless pacemaker systems in cardiac MRI. Wien Klin Wochenschr. 2018 July 1;13013:427–35. https://doi.org/10.1007/s00508-018-1334-z.
Blessberger H, Kiblboeck D, Reiter C, et al. Monocenter Investigation Micra® MRI study (MIMICRY): feasibility study of the magnetic resonance imaging compatibility of a leadless pacemaker system. EP Eur. 2019 January 1;211:137–41. https://doi.org/10.1093/europace/euy143.
Soejima K, Edmonson J, Ellingson ML, Herberg B, Wiklund C, Zhao J. Safety evaluation of a leadless transcatheter pacemaker for magnetic resonance imaging use. Heart Rhythm. 2016 October 1;1310:2056–63. https://doi.org/10.1016/j.hrthm.2016.06.032.
Afzal MR, Daoud EG, Cunnane R, et al. Techniques for successful early retrieval of the Micra transcatheter pacing system: A worldwide experience. Heart Rhythm. 2018 June 1;156:841–6. https://doi.org/10.1016/j.hrthm.2018.02.008.
Grubman E, Ritter P, Ellis CR, et al. To retrieve, or not to retrieve: System revisions with the Micra transcatheter pacemaker. Heart Rhythm. 2017 December 1;1412:1801–6. https://doi.org/10.1016/j.hrthm.2017.07.015.
Sánchez P, Apolo J, San Antonio R, Guasch E, Mont L, Tolosana JM. Safety and usefulness of a second Micra transcatheter pacemaker implantation after battery depletion. EP Eur. 2019 June 1;216:885. https://doi.org/10.1093/europace/euz064.
Auricchio A, Delnoy P-P, Regoli F, et al. First-in-man implantation of leadless ultrasound-based cardiac stimulation pacing system: novel endocardial left ventricular resynchronization therapy in heart failure patients. EP Eur. 2013 August 1;158:1191–7. https://doi.org/10.1093/europace/eut124.
Reddy VY, Miller MA, Neuzil P, et al. Cardiac Resynchronization Therapy With Wireless Left Ventricular Endocardial Pacing: The SELECT-LV Study. J Am Coll Cardiol. 2017 May 2;6917:2119–29. https://doi.org/10.1016/j.jacc.2017.02.059.
Carabelli A, Jabeur M, Jacon P, et al. European experience with a first totally leadless cardiac resynchronization therapy pacemaker system. EP Eur. 2021 May 1;235:740–7. https://doi.org/10.1093/europace/euaa342.
Valentinuzzi ME. Biological Pacemakers: Still a Dream? IEEE Pulse. 2019 September;105:18–9. https://doi.org/10.1109/MPULS.2019.2937241.
Edelberg JM, Aird WC, Rosenberg RD. Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J Clin Invest. 1998 January 15;1012:337–43. PMID: 9435305. https://doi.org/10.1172/JCI1330.
Edelberg JM, Huang DT, Josephson ME, Rosenberg RD. Molecular enhancement of porcine cardiac chronotropy. Heart Br Card Soc. 2001 November;865:559–62. PMID: 11602553. https://doi.org/10.1136/heart.86.5.559.
Miake J, Marbán E, Nuss HB. Biological pacemaker created by gene transfer. Nature. 2002 September;4196903:132–3. https://doi.org/10.1038/419132b.
Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005 January 4;1111:11–20. PMID: 15611367. https://doi.org/10.1161/01.CIR.0000151313.18547.A2.
Protze SI, Liu J, Nussinovitch U, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017 January;351:56–68. PMID: 27941801. https://doi.org/10.1038/nbt.3745.
Kapoor N, Liang W, Marbán E, Cho HC. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol. 2013 January;311:54–62. PMID: 23242162. https://doi.org/10.1038/nbt.2465.
Hu Y-F, Dawkins JF, Cho HC, Marbán E, Cingolani E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci Transl Med. 2014 July 16;6245:245ra94-245ra94. https://doi.org/10.1126/scitranslmed.3008681.
Opublikowane
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.