Diagnostyka idiopatycznego włóknienia płuc- przegląd obecnie stosowanych metod i wybranych technik innowacyjnych
Słowa kluczowe:
idiopatyczne włóknienie płuc, IPF, diagnostyka, PETStreszczenie
Idiopatyczne włóknienie płuc(ang. idiopathic pulmonary fibrosis, IPF) to przewlekła, postępująca choroba prowadząca do nieodwracalnego uszkodzenia tkanki płucnej. Do rozpoznania IPF konieczny jest obraz w tomografii komputerowej wysokiej rozdzielczości(ang. high resolution computed tomography, HRCT) oraz badanie histopatologiczne gdy obraz HRCT nie jest rozstrzygający. Wymagane jest wykluczenie innych przyczyn włóknienia płuc. Biopsja płuca wiąże się z ryzykiem zaostrzenia IPF i poważnymi powikłaniami które w tej grupie chorych występują częściej. Istnieje zapotrzebowanie na nowe narzędzia ułatwiające postawienie rozpoznania i określenie rokowania. Obecnie badane są cząsteczki mikro-RNA zawarte w egzosomach. Istnieje potencjalny profil miRNA charakterystyczny dla IPF, który mógłby być przydatny w diagnostyce choroby. Nowe metody diagnostyki obrazowej takie jak PET/TK i SPECT za pomocą swoistych znaczników pozwalają zobrazować miejsca włóknienia tkanki płucnej. Bada się uzyskane obrazy jako markery prognostyczne szybko postępującego IPF. Odkrywane na nowo są proste wskaźniki takie jak BMI które również mogą być pomocne w ustaleniu rokowania. Wprowadzenie nowych narzędzi diagnostycznych do schematów postępowania dotyczących IPF umożliwi wcześniejsze rozpoznanie choroby i wyselekcjonowanie chorych z dużym ryzykiem ciężkiego przebiegu w celu kierowania ich do badań klinicznych oraz transplantacji płuc.
Rozdziały
-
Diagnostyka idiopatycznego włóknienia płuc- przegląd obecnie stosowanych metod i wybranych technik innowacyjnych
Bibliografia
Lynch DA, Sverzellati N, Travis WD, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018;6(2):138-153. doi:10.1016/S2213-2600(17)30433-2
Gruden JF. CT in Idiopathic Pulmonary Fibrosis: Diagnosis and Beyond. American Journal of Roentgenology. 2016;206(3):495-507. doi:10.2214/AJR.15.15674
Kwak N, Park CM, Lee J, et al. Lung cancer risk among patients with combined pulmonary fibrosis and emphysema. Respir Med. 2014;108(3):524-530. doi:10.1016/j.rmed.2013.11.013
Green DB, Legasto AC, Drexler IR, Gruden JF. Pulmonary fibrosis on the lateral chest radiograph: Kerley D lines revisited. Insights Imaging. 2017;8(5):483-489. doi:10.1007/s13244-017-0565-2
Chest Imaging. In: Primer of Diagnostic Imaging. Elsevier; 2011:1-71. doi:10.1016/B978-0-323-06538-2.00001-9
Stark P. Imaging in Pulmonary Disease. In: Goldman’s Cecil Medicine. Elsevier; 2012:516-523. doi:10.1016/B978-1-4377-1604-7.00084-1
Jacob J, Hansell DM. HRCT of fibrosing lung disease. Respirology. 2015;20(6):859-872. doi:10.1111/resp.12531
Edey AJ, Devaraj AA, Barker RP, Nicholson AG, Wells AU, Hansell DM. Fibrotic idiopathic interstitial pneumonias: HRCT findings that predict mortality. Eur Radiol. 2011;21(8):1586-1593. doi:10.1007/s00330-011-2098-2
Robbie H, Wells AU, Jacob J, et al. Visual and Automated CT Measurements of Lung Volume Loss in Idiopathic Pulmonary Fibrosis. American Journal of Roentgenology. 2019;213(2):318-324. doi:10.2214/AJR.18.20884
Robbie H, Wells AU, Fang C, et al. Serial decline in lung volume parameters on computed tomography (CT) predicts outcome in idiopathic pulmonary fibrosis (IPF). Eur Radiol. 2022;32(4):2650-2660. doi:10.1007/s00330-021-08338-2
Yagihashi K, Huckleberry J, Colby T V., et al. Radiologic–pathologic discordance in biopsy-proven usual interstitial pneumonia. European Respiratory Journal. 2016;47(4):1189-1197. doi:10.1183/13993003.01680-2015
Tomassetti S, Piciucchi S, Tantalocco P, Dubini A, Poletti V. The multidisciplinary approach in the diagnosis of idiopathic pulmonary fibrosis: a patient case-based review. European Respiratory Review. 2015;24(135):69-77. doi:10.1183/09059180.00011714
Utz JP, Ryu JH, Douglas WW, et al. High short-term mortality following lung biopsy for usual interstitial pneumonia. European Respiratory Journal. 2001;17(2):175-179. doi:10.1183/09031936.01.17201750
Piotrowski W, Bestry I, Białas A, et al. Guidelines of the Polish Respiratory Society for Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis. Adv Respir Med. 2020;88(1):42-94. doi:10.5603/ARM.2020.0081
Lodhi T, Hughes G, Stanel S, Chaudhuri N, Hayton C. Transbronchial Lung Cryobiopsy in Idiopathic Pulmonary Fibrosis: A State of the Art Review. Adv Ther. 2019;36(9):2193-2204. doi:10.1007/s12325-019-01036-y
Sverzellati N, Wells AU, Tomassetti S, et al. Biopsy-proved Idiopathic Pulmonary Fibrosis: Spectrum of Nondiagnostic Thin-Section CT Diagnoses. Radiology. 2010;254(3):957-964. doi:10.1148/radiol.0990898
Wesołowska A, Piwocka K. Egzosomalne mikroRNA jako element komunikacji międzykomórkowej w nowotworach. Postępy Biochemii. June 30, 2017:110-118.
Mohr A, Mott J. Overview of MicroRNA Biology. Semin Liver Dis. 2015;35(01):003-011. doi:10.1055/s-0034-1397344
Li H, Zhao X, Shan H, Liang H. MicroRNAs in idiopathic pulmonary fibrosis: involvement in pathogenesis and potential use in diagnosis and therapeutics. Acta Pharm Sin B. 2016;6(6):531-539. doi:10.1016/j.apsb.2016.06.010
Lam TK, Shao S, Zhao Y, et al. Influence of Quercetin-Rich Food Intake on microRNA Expression in Lung Cancer Tissues. Cancer Epidemiology, Biomarkers & Prevention. 2012;21(12):2176-2184. doi:10.1158/1055-9965.EPI-12-0745
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997-1006. doi:10.1038/cr.2008.282
Yang G, Yang L, Wang W, Wang J, Wang J, Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene. 2015;562(1):138-144. doi:10.1016/j.gene.2015.02.065
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997-1006. doi:10.1038/cr.2008.282
Makiguchi T, Yamada M, Yoshioka Y, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res. 2016;17(1):110. doi:10.1186/s12931-016-0427-3
Kaur G, Maremanda KP, Campos M, et al. Distinct Exosomal miRNA Profiles from BALF and Lung Tissue of COPD and IPF Patients. Int J Mol Sci. 2021;22(21):11830. doi:10.3390/ijms222111830
Krzakowski M, Rutkowski P, Jassem J, et al. Recommendations on the application of positron emission tomography in oncology. Oncology in Clinical Practice. 2015;11(4):155-171. www.opk.viamedica.plwww.opk.viamedica.plwww.opk.viamedica.pl
Erasmus JJ, Patz EF. POSITRON EMISSION TOMOGRAPHY IMAGING IN THE THORAX. Clin Chest Med. 1999;20(4):715-724. doi:10.1016/S0272-5231(05)70250-1
Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22(4):487-497. doi:10.1002/ana.410220408
Kobayashi K, Bhargava P, Raja S, et al. Image-guided Biopsy: What the Interventional Radiologist Needs to Know about PET/CT. Radiographics. 2012;32:1483-1501. doi:10.1148/rg.325115159
Groves AM, Win T, Screaton NJ, et al. Idiopathic Pulmonary Fibrosis and Diffuse Parenchymal Lung Disease: Implications from Initial Experience with 18 F-FDG PET/CT. Journal of Nuclear Medicine. 2009;50(4):538-545. doi:10.2967/jnumed.108.057901
El-Chemaly S, Malide D, Yao J, et al. Glucose Transporter-1 Distribution in Fibrotic Lung Disease. Chest. 2013;143(6):1685-1691. doi:10.1378/chest.12-1359
Yoon HY, Lee SH, Ha S, Ryu JS, Song JW. The Value of 18 F-FDG PET/CT in Evaluating Disease Severity and Prognosis in Idiopathic Pulmonary Fibrosis Patients. J Korean Med Sci. 2021;36(41). doi:10.3346/jkms.2021.36.e257
Atkinson JJ, Gunsten SP, Luehmann HP, et al. Visualizing CCR2-mediated inflammation in pulmonary fibrosis. In: C34. ILD AND IPF: CLINICAL AND MECHANISTIC STUDIES. American Thoracic Society; 2019:A4607-A4607.
Brody SL, Atkinson JJ, Gunsten SP, et al. First-in-human imaging of CCR2 cell inflammation in idiopathic pulmonary fibrosis. In: D103. IDIOPATHIC INTERSTITIAL PNEUMONIAs: NATURAL HISTORY AND PROGNOSIS. American Thoracic Society; 2019:A7135-A7135.
Brody SL, Gunsten SP, Luehmann HP, et al. Chemokine Receptor 2–targeted Molecular Imaging in Pulmonary Fibrosis. A Clinical Trial. Am J Respir Crit Care Med. 2021;203(1):78-89. doi:10.1164/rccm.202004-1132OC
NCT03492762.
Antończak PP, Jurzak M, Adamczyk K, Garncarczyk A, Hartman-Petrycka M. The effect of tranilast on fibroblast activation protein α (FAP-α) expression in normal and keloid fibroblasts in vitro. Dermatology Review. 2017;3:300-313. doi:10.5114/dr.2017.68777
Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer and Metastasis Reviews. 2020;39(3):783-803. doi:10.1007/s10555-020-09909-3
Röhrich M, Leitz D, Glatting FM, et al. Fibroblast Activation Protein–Specific PET/CT Imaging in Fibrotic Interstitial Lung Diseases and Lung Cancer: A Translational Exploratory Study. Journal of Nuclear Medicine. 2022;63(1):127-133. doi:10.2967/jnumed.121.261925
Mathai SK, Cardwell J, Metzger F, et al. Preclinical Pulmonary Fibrosis Circulating Protein Biomarkers. Am J Respir Crit Care Med. 2020;202(12):1720-1724. doi:10.1164/rccm.202003-0724LE
Ganguly T, Tang SY, Bauer N, Sutcliffe JL. Evaluation of Two Optical Probes for Imaging the Integrin αvβ6− In Vitro and In Vivo in Tumor-Bearing Mice. Mol Imaging Biol. 2020;22(5):1170-1181. doi:10.1007/s11307-019-01469-5
John AE, Luckett JC, Tatler AL, et al. Preclinical SPECT/CT Imaging of αvβ6 Integrins for Molecular Stratification of Idiopathic Pulmonary Fibrosis. Journal of Nuclear Medicine. 2013;54(12):2146-2152. doi:10.2967/jnumed.113.120592
Weatherley ND, Eaden JA, Stewart NJ, et al. Experimental and quantitative imaging techniques in interstitial lung disease. Thorax. 2019;74(6):611-619. doi:10.1136/thoraxjnl-2018-211779
Liu H, Gao L, Yu X, et al. Small-animal SPECT/CT imaging of cancer xenografts and pulmonary fibrosis using a 99mTc-labeled integrin αvβ6-targeting cyclic peptide with improved in vivo stability. Biophys Rep. 2018;4(5):254-264. doi:10.1007/s41048-018-0071-1
Englert H, Richards BL, Angelides S, et al. 99mTc-labelled glucosamine in the assessment of systemic sclerosis inflammatory lung disease: a novel inexpensive investigative tool with predictive value. Ann Nucl Med. 2021;35(10):1157-1166. doi:10.1007/s12149-021-01653-0
Zhang D, Zhuang R, Li J, et al. MicroSPECT Imaging-Guided Treatment of Idiopathic Pulmonary Fibrosis in Mice with a Vimentin-Targeting 99m Tc-Labeled N -Acetylglucosamine-Polyethyleneimine. Mol Pharm. 2021;18(11):4140-4147. doi:10.1021/acs.molpharmaceut.1c00545
Muzard J, Sarda-Mantel L, Loyau S, et al. Non-Invasive Molecular Imaging of Fibrosis Using a Collagen-Targeted Peptidomimetic of the Platelet Collagen Receptor Glycoprotein VI. PLoS One. 2009;4(5):e5585. doi:10.1371/journal.pone.0005585
Broens B, Duitman JW, Zwezerijnen GJC, Nossent EJ, van der Laken CJ, Voskuyl AE. Novel tracers for molecular imaging of interstitial lung disease: A state of the art review. Autoimmun Rev. 2022;21(12):103202. doi:10.1016/j.autrev.2022.103202
Zheng L, Ding X, Liu K, et al. Molecular imaging of fibrosis using a novel collagen-binding peptide labelled with 99mTc on SPECT/CT. Amino Acids. 2017;49(1):89-101. doi:10.1007/s00726-016-2328-7
Zinellu A, Carru C, Pirina P, Fois AG, Mangoni AA. A Systematic Review of the Prognostic Significance of the Body Mass Index in Idiopathic Pulmonary Fibrosis. J Clin Med. 2023;12(2):498. doi:10.3390/jcm12020498
Fang C, Huang H, Guo J, Ferianc M, Xu Z. Real-world experiences: Efficacy and tolerability of pirfenidone in clinical practice. PLoS One. 2020;15(1):e0228390. doi:10.1371/journal.pone.0228390
Ikeda S, Sekine A, Baba T, et al. Negative impact of anorexia and weight loss during prior pirfenidone administration on subsequent nintedanib treatment in patients with idiopathic pulmonary fibrosis. BMC Pulm Med. 2019;19(1):78. doi:10.1186/s12890-019-0841-7
Nishiyama O, Yamazaki R, Sano H, et al. Fat-free mass index predicts survival in patients with idiopathic pulmonary fibrosis. Respirology. 2017;22(3):480-485. doi:10.1111/resp.12941
Nakano A, Ohkubo H, Taniguchi H, et al. Early decrease in erector spinae muscle area and future risk of mortality in idiopathic pulmonary fibrosis. Sci Rep. 2020;10(1):2312. doi:10.1038/s41598-020-59100-5
Sangani RG, Ghio AJ, Mujahid H, et al. Outcomes of Idiopathic Pulmonary Fibrosis Improve with Obesity: A Rural Appalachian Experience. South Med J. 2021;114(7):424-431. doi:10.14423/SMJ.0000000000001275
Lee JS, Martin-Schwarze A, Freiheit E, Trzaskoma B, Burg C. Real-World Clinical Outcomes Based on Body Mass Index and Annualized Weight Change in Patients with Idiopathic Pulmonary Fibrosis. Adv Ther. 2023;40(2):691-704. doi:10.1007/s12325-022-02382-0
Jouneau S, Crestani B, Thibault R, et al. Relationship between body mass index (BMI) and decline in FVC in patients with IPF. In: Idiopathic Interstitial Pneumonias. European Respiratory Society; 2019:PA2252. doi:10.1183/13993003.congress-2019.PA2252
Yoo JW, Kim J, Song JW. Impact of the revised definition on incidence and outcomes of acute exacerbation of idiopathic pulmonary fibrosis. Sci Rep. 2022;12(1):8817. doi:10.1038/s41598-022-12693-5
Tang F, Weber B, Stowasser S, Korell J. Parametric Time‐to‐Event Model for Acute Exacerbations in Idiopathic Pulmonary Fibrosis. CPT Pharmacometrics Syst Pharmacol. 2020;9(2):87-95. doi:10.1002/psp4.12485
Dotan Y, Shapiro WB, Male E, et al. Clinical predictors and explant lung pathology of acute exacerbation of idiopathic pulmonary fibrosis. ERJ Open Res. 2020;6(4):00261-02019. doi:10.1183/23120541.00261-2019
Lee JS, Martin-Schwarze A, Freiheit E, Trzaskoma B, Burg C. Real-World Clinical Outcomes Based on Body Mass Index and Annualized Weight Change in Patients with Idiopathic Pulmonary Fibrosis. Adv Ther. 2023;40(2):691-704. doi:10.1007/s12325-022-02382-0
Kulkarni T, Yuan K, Tran-Nguyen TK, et al. Decrements of body mass index are associated with poor outcomes of idiopathic pulmonary fibrosis patients. PLoS One. 2019;14(10):e0221905. doi:10.1371/journal.pone.0221905
ZINELLU A, COLLU C, ZINELLU E, et al. IC4: a new combined predictive index of mortality in idiopathic pulmonary fibrosis. Panminerva Med. 2022;64(2). doi:10.23736/S0031-0808.21.04144-6
Lee SH, Park JS, Kim SY, et al. Comparison of CPI and GAP models in patients with idiopathic pulmonary fibrosis: a nationwide cohort study. Sci Rep. 2018;8(1):4784. doi:10.1038/s41598-018-23073-3
Kishaba T, Nagano H, Nei Y, Yamashiro S. Body mass index—percent forced vital capacity—respiratory hospitalization: new staging for idiopathic pulmonary fibrosis patients. J Thorac Dis. 2016;8(12):3596-3604. doi:10.21037/jtd.2016.12.49
Raghu G, Collard HR, Egan JJ, et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788-824. doi:10.1164/rccm.2009-040GL
Collard HR, Moore BB, Flaherty KR, et al. Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2007;176(7):636-643. doi:10.1164/rccm.200703-463PP
Buendía-Roldán I, Mejía M, Navarro C, Selman M. Idiopathic pulmonary fibrosis: Clinical behavior and aging associated comorbidities. Respir Med. 2017;129:46-52. doi:10.1016/j.rmed.2017.06.001
Collard HR, King TE, Bartelson BB, Vourlekis JS, Schwarz MI, Brown KK. Changes in Clinical and Physiologic Variables Predict Survival in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2003;168(5):538-542. doi:10.1164/rccm.200211-1311OC
Zapowiedzi
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.